Tips for porting VGA to the CYS8CKIT-059 (PSoC 5LP Stick)

Eric Ponce
Massachusetts Institute of Technology

May 13, 2019

1 Introduction
The Cypress PSoC Creator project and design files provided to 6.115 students for using VGA in their final

projects were designed around a custom designed PSoC 5LP VGA board. This article introduces some tips
for porting the supplied code over to the CYS8CKIT-059 PSoC 5LP Evaluation Board.

2 Pin Changes

Table 4-1. J1 Header Pin Details Table 4-2. J2 Header Pin Details
PSoC 5LP Prototyping Kit GPIO Header (J1) PSoC 5LP Prototyping Kit GPIO Header (J2)
Pin Signal Description Pin Signal Description
U101 |P20 GPIO U201 |vDD Power
J1.02 P21 GPIO/LED 1202 |GND Ground
J1_03 P22 GPIO/SW J2_03 RESET Reset
J1.04 |P23 GPIO 204 [P0z GPIO
1105 EZA GPIO 05 [Fos GPIO
J1.06 |P25 GPIO J2:06 P0.5 GPIO
J1._07 P26 GPIO J2_07 P0.4 GPIO/BYPASS CAP
J1.08 |P27 GPIO J2_08 |P03 GPIO/BYPASS CAP
J1_09 E12.7 GPIO/UART_TX J2_09 |P02 GPIO/BYPASS CAP
J1_10 |P126 |GPIO/UART_RX 1210 |Po1 GPIO
J1_1 P125 |GPIO o P0.0 GPIO
J1.12 |P124 |GPIO J2:12 P155 |GPIO
J1_13 E12.3 GPIO J2_13 |P154 |GPIO/CMOD
J1.14 |P122 |GPIO J2_14 |P153 [GPIOXTAL_IN
J1_15 P12.1 GPIO/I2C_SDA J2_15 P15.2 GPIO/XTAL_OUT
J1_16 |P120 |GPION2C_SCL 12_16 |P154 GPIO
17 ELO GPIO DEBUG |57 P50 [oPio
J1_18 [P11 GPIO EXTCIR [j2 18 |P37 GPIO
J1_19 P12 GPIO J2_19 P3.6 GPIO
J1.20 |P1.3 GPIO 220 [P35 GPIO
J1_21 EM GPIO %21 |raa GPIO
J122 |P15 GPIO J2:22 P33 GPIO
J1.23 P16 GPIO J2_23 P3.2 GPIO/BYPASS CAP
J124 |P17 GPIO J2_24 |P3d GPIO
U125 |GND Ground %25 [0 GPIO
J126 |VDDIO _|Power J2:28 GND Ground

Figure 1: CY8CKIT-059 Pinout w/ Debug and Externally Loaded Pins Highlighted

The implementation requires 6 contiguous pins from a single port for the 2-bit RGB VGA output pins.
On a small evaluation board with overloaded pin functionality, such as the CY8CKIT-059, this presents some
constraints on the pin selection. In particular, the kit contains 7 GPIOs externally loaded by a capacitor, 2
GPIOs connected to a push button and LED, and 4 GPIOs used for debugging and programming.

The highest possible input frequency for a 1024 x 768 @ 60 Hz VGA display is the known as the pixel
frequency and is 656 MHz. In our implementation, the pixels are grouped into 8 x 8 chunks. reducing the
highest PSoC output frequency to 8.125 MHz. This frequency is too high to drive directly into a capacitor,
so Ports 0 and 3 are not eligible for VGA output. Ports 1, 2, and 15 are also not eligible so only Port 12 is
available for use as the VGA output. Even for Port 12, either choice of contiguous pin range will consume

either the UART or I2C connection to the on-board KitProg. Similar considerations will need to be taken
into account for porting to other evaluation boards such as the CYSCKIT-050.

Note that PSoC Creator will not always warn you if you select improper pins, as it does not make
assumptions about external circuits connected to the pins.

3 Clocks

Configure System Clocks

IMHz =1%
Signal

[PLL_OUT (65.143 MHz)
O Freq @ Divider
]
'J ke T
I3kHz
[100kH: & Cliss
1
A
1
v A J
o Lo NTAL 32iH: XTAL FLL_OUT MASTER CLE BUS_CLE (CPU)
[oK [[concel

Figure 2: Default VGA Project Clock Configuration

The provided design files rely on using an external 24 MHz crystal to provide the main clock rate to the
PSoC device as shown in Figure 2.

Configure System Clocks

IMHz 1% ~

[PLL_OUT (65 MHz)
() Freq (@) Divider

L]

Bus Clock

(O Freqg @ Divider

____——

MO Lo XTAL 3IkHz XTAL PLL_OUT MASTER,_CLK BUS_CLK (CPU)

Figure 3: CY8CKIT-059 Appropriate Clock Configuration

As the CYSCKIT-059 does not include an on-board external clock, the clock configuration settings will
need to be changed when porting over. A 3 MHz internal clock will suffice for most VGA implementations,
and can be configured using the Creator clock configuration window as shown in Figure 3

4 Linker Script and Video Glitches

Table 5-5. Peripheral Data Address Map

Address Range Purpose
0x00000000 — 0x0003FFFF | 256 KB flash
0x1FFF8000 - 0x1FFFFFFF|32 KB SRAM in Code region
0x20000000 - 0x20007FFF |32 KB SRAM in SRAM region
0x40004000 - 0x400042FF |Clocking, PLLs, and oscillators
0x40004300 — 0x400043FF |Power management
0x40004500 - 0x400045FF |Ports interrupt control
0x40004700 - 0x400047FF [Flash programming interface
0x40004800 - 0x400048FF |Cache controller
0x40004900 — 0x400049FF [I°C controller
0x40004E00 ~ Ox40004EFF |Decimator

Figure 4: PSoC CY8C5H8LP Family Memory Map

To improve memory performance in this VGA application, the contiguous 64 kB SRAM memory provided
in the PSOC is split into two individually-accessible banks. This avoids memory port conflicts when software
and DMA try to access SRAM at the same time.

Page 21 in [1] details the memory map for CY8C58LP Family PSoC devices, shown in Figure 4.

We reserve the first 32kB SRAM Code region for normal program data and the second 32kB SRAM
block for video memory by changing the memory section at line 24 in the original linker script (cm3gcc.1d),

MEMORY
{
rom(rx) : ORIGIN=0x0, LENGTH = 262144

ram (rwx) : ORIGIN=0x20000000 — (65536/2), LENGTH 65536

}

to what we find in our provided linker script (custom.1d),

MEMORY
{
rom(rx) : ORIGIN=0x0, LENGTH = 262144
ram (rwx) : ORIGIN=0x20000000 — (65536/2), LENGTH = 32768
vram (rwx) : ORIGIN=0x20000000, LENGTH = 32768

}

This custom linker script is already included in the design files, as well as instructions for using it, but in
the case of a non-standard PSoC with a different memory map, similar changes to the default linker script
will be need to be made. In the worst case, a single SRAM block may be used, although display glitches
caused by memory conflicts will be likely.

Even with a properly functioning DMA and SRAM setup, there are still multiple ways to cause glitches in
the video output through normal programming of the PSoC. Memory moves throughout the PSoC on a large
peripheral data bus controlled by the CPU and DMA controller (DMAC), connected by smaller-data-width
spokes to individual chunks of memory as shown in Figure 5. While transfers between different spokes can
occur in parallel, a single spoke can only handle one memory transaction at a given time. The DMAC in this
application is constantly copying data between the SRAM and IO memory, using spokes 0 and 1 to output
the pixels to the VGA connector. Thus, if your program modifications make heavy use of the IO or external
memory, you are likely to cause spoke 1 conflicts between the CPU and DMAC, leading to video glitches.

usB
CAN
Fixed
ion 12C
System Fed] Univarsal
ixed o
Function Digital Blocks
—PI SRAM EEPROM (UDB)
Y
CPU
A
Y
Spoke
Arbitration
A
Y
DMAC
10 Interface ADCs Digital filter Univarsal
External DACs block (DFB) Digital Blocks
memory (ubB)
interface Other :’::109
(EMIF) Peripherals
£

Figure 5: Internal PSoC Data Bus layout

References

[1] PSoC 5LP: CY8C58LP Family Datasheet: Programmable System-on-Chip (PSoC). [Ounline].
Available: https://www.cypress.com/documentation/datasheets/psoc-5lp-cy8c58lp-family-datasheet-

programmable-system-chip-psoc. [Accessed: 30-Apr-2019].

