
PSoC	5LP	“Vendor-Specific”	USBFS	Tutorial	
	

Eric	Ponce	
	

May	9,	2016	
	
Introduction	
	
	 This	tutorial	sets	up	a	simple	USBFS	(USB	Full	Speed)	implementation	to	echo	back	sent	
data	on	the	PSoC	5LP.	This	example	uses	Python	to	interface	with	the	PSoC.		

	
PSoC	Setup	
	

Firstly,	create	a	new	project	in	PSoC	Creator	for	the	PSoC	5LP.	The	supplied	example	
code	is	called	“usb_echo.”	In	the	‘TopDesign.cysch’	file,	drag	in	a	USBFS	block	under	
Communications-USB.	
	

	
	

Open	the	configuration	screen	by	double	clicking	the	component.	Change	its	name	to	
USB.	Under	‘Descriptor	Root’,	highlight	the	‘Device	Descriptor’	label	and	set	the	values	as	
follows:	

• Vendor	ID:	0x4B4	
o This	ID	describes	the	vendor	for	the	USB	device.	In	this	case,	we’ll	borrow	

Cypress’s.	Vendor	ID’s	are	assigned	by	the	USB-IF	and	cost	several	thousand	
dollars	a	year!	

• Product	ID:	0x80	
o This	describes	individual	vendor	products.	0x80	was	arbitrarily	chosen.	

• Device	Release:	0x00	
o Version	number.	Useful	for	determining	product	version	when	designing	USB	

application	and	potentially	distributing	firmware	updates	

• Device	Class:	0xFF	(Vendor	Specific)	
o Our	device	does	not	describe	to	any	of	the	USB	standard	device	classes	so	we	

choose	the	generic	‘Vendor	Specific’	class.	
• Device	Subclass:	0x00	(No	subclass)	

o We	aren’t	taking	advantage	of	subclasses	in	this	application	
• Device	Protocol:	0x0	

o Since	we’re	vendor	specific,	this	is	also	arbitrary.	
• Manufacturer	String:	“Cypress”	

o The	manufacturer	of	the	PSoC!	
• Product	String:	“usb_echo”	

o Our	product’s	name	
	
	

	
	
	 Now,	click	Configuration	Descriptor	and	set	the	values	as	follows:	
	

• Configuration	String:	‘main’	
o The	description	of	our	only	configuration.	In	this	case,	we	called	it	main	

• Max	Power	(mA):	50mA	

o This	value	tells	the	host	how	much	power	the	device	expects	to	draw.	This	allows	
the	host	to	cut	off	the	device	in	the	case	of	hardware	failures	resulting	in	large	
current	draw.	

• Device	Power:	Bus	Powered	
o Tell	the	host	to	give	us	power	

• Remote	Wakeup:	Disabled	
o This	application	won’t	use	remote	wakeup	capabilities	

	
	

	
	
	 Onto	‘Alternate	Setting	0’.	Set	the	values	as	shown	below:	
	

• Interface	String:	‘main’	
o Our	only	interface,	so	we’ll	call	it	main	

• Class:	0xFF	(Vendor-Specific)	
o Once	again,	this	application	doesn’t	conform	to	any	standard	classes,	so	we’ll	go	

with	‘vendor-specific’	
• Subclass:	0x00	(No	subclass)	

o No	need	for	subclasses	here	
• Protocol:	0x0	

o Arbitrarily	decided	since	we’re	vendor	specific	
	

	
	
	 Here	comes	the	point	where	we	actually	decide	how	we	are	going	to	communicate.	
Endpoints	are	unidirectional	(except	for	control	transfers)	communication	channels	that	can	be	
designated	to	specific	tasks	by	the	driver.	In	this	case	we	need	two	endpoints,	one	for	in	(into	
the	Host	or	out	from	the	PSoC),	and	one	for	out	(out	from	the	Host	or	into	the	PSoC),	so	press	
the	“Add	Endpoint”	button.	Select	the	first	endpoint	and	set	the	settings	as	follows:	
	

• Endpoint	Number:	EP1	
o Each	interface	can	have	up	to	9	endpoints,	but	endpoint	0	is	reserved	for	control	

type	transfers.	Our	first	endpoint	will	be	endpoint	1.	
• Direction:	In	

o This	endpoint	will	be	our	means	of	sending	data	to	the	Host	PC.	
• Transfer	Type:	Bulk	

o There	are	four	transfer	types	available	to	endpoints	in	the	USB	protocol:	Control,	
Interrupt,	Bulk,	and	Isochronous.		

§ Control	transfers	allow	us	to	perform	a	variety	of	command	and	status	
operations,	such	as	retrieving	all	those	settings	we	just	set	up!	

§ Interrupt	transfers	are	useful	for	applications	with	non-periodic	data	
transfers	requiring	quick	attention,	much	like	the	microcontroller	
interrupts	you	should	be	familiar	with	

§ Bulk	transfers	allow	for	large	bursts	of	data	and	has	guaranteed	delivery	
and	error	detection	

§ Isochronous	transfers	involve	bounded	latency	data	transfers	with	no	
delivery	guarantees.	Useful	with	real	time	data	when	you	don’t	mind	
losing	a	few	packets.	

• Max	Packet	Size:	64	
o The	maximum	size	of	a	packet	allowable	on	this	endpoint	

	

	
	

For	endpoint	2,	set	the	following	values:	
	

• Endpoint	Number:	EP2	
• Direction:	Out	
• Transfer	Type:	Bulk	
• Max	Packet	Size:	64	

	
Press	okay	to	save	the	values	and	open	the	design-wide	resources	file.	Navigate	to	the	‘Clocks’	
tab.	Here	we	will	set	the	clocks	to	the	values	required	for	the	tight	timing	tolerances	of	USB.	
Double	click	the	USB_CLK	line	to	open	the	clock	configuration	window	and	set	the	values	
described	below:	

	
• Set	the	IMO	(internal	main	oscillator)	frequency	to	24	Mhz	+-0.25%	
• Activate	100KHz	in	the	ILO	(internal	low-frequency	oscillator)	and	select	100KHz	to	be	

routed	
• Enable	the	USB	clock	

	

	
	

Back	in	the	‘Pins’	tab,	we	can	leave	the	USB:Dm	and	the	USB:Dp	pins	empty	so	that	
Creator	can	select	the	correct	pins	for	us.	Compile	the	program	so	that	Creator	generates	the	
necessary	APIs	for	you	and	then	open	‘main.c’.	The	following	code	initializes	the	USB	device	
(and	particularly	the	OUT	endpoint)	and	echoes	out	and	received	data.	Remember	that	the	OUT	
endpoint	is	OUT	from	the	HOST	and	into	the	PSoC	

	

#include <project.h>

uint8 buffer[512], length;

int main()
{
 CyGlobalIntEnable; // Enable interrupts
 USB_Start(0, USB_3V_OPERATION); // Start the USB peripheral
 while(!USB_GetConfiguration()); // Wait until USB is configured
 USB_EnableOutEP(2); // Enable our output endpoint (EP2)
 for(;;){
 while(USB_GetEPState(2) == USB_OUT_BUFFER_EMPTY); // Wait until we have
data
 length = USB_GetEPCount(2); // Get the length of received data
 USB_ReadOutEP(2, buffer, length); // Get the data

while(USB_GetEPState(1) != USB_IN_BUFFER_EMPTY); // Wait until our IN
EP is empty

USB_LoadInEP(1, buffer, length); // Echo the data back into the buffer
 }
}

	
Upload	the	program	to	the	PSoC	and	move	onto	the	next	step.	
	
Software	Requirements	and	Setup	(Windows	7/10)	
	
Ensure	that	you	have	Python	3	installed	and	available	in	your	PATH	(i.e.	you	can	run	python	
from	the	command	line)	
	
Besides	Python,	we	are	also	going	to	need	libusb	(a	C	library	for	interfacing	with	USB)	and	
PyUSB.	We	will	use	libusb	to	generate	a	generic	driver	for	our	device	and	then	PyUSB	and	
Python	to	communicate	with	it.	
	
To	generate	the	proper	libusb	driver,	we	will	use	a	program	called	Zadig	(http://zadig.akeo.ie/).	
Download	it	and	run	it	to	be	presented	the	interface	below:	
	

	
	
Then,	plug	in	your	device	though	the	USB	port	(generally	not	the	same	port	used	to	program	
the	device)	and	it	should	show	up	in	Zadig.	Set	the	driver	type	to	libusb-win32	and	press	install.	

	
	
Once	the	driver	is	installed,	in	the	windows	Device	Manager	(can	be	search	for	in	the	Start	
Menu),	your	device	should	show	up	under	‘libusb-win32	device’	if	it	installed	correctly	
	

	
	
Now	that	this	device	has	been	successfully	installed,	we	need	to	install	PyUSB.	Fortunately,	
Python	comes	with	a	package	manager	called	pip.	To	install	pyusb	simply	enter	the	command	
`pip	install	pyusb`	into	your	command	line.	
	

Software	Requirements	and	Setup	(Mac	OS	X)	
	
For	Mac	OS	X	it	is	recommended	to	use	a	package	manager	such	as	homebrew	
(http://brew.sh).	It	will	greatly	simplify	installation	of	the	necessary	requirements.	This	tutorial	
assumes	you	have	installed	homebrew	
	
Install	python	and	libusb	using	the	command	‘brew	install	python3	libusb’	in	your	command	
line.	Now	that	python	is	installed,	you	can	use	pip	to	install	PyUSB.	To	install	PyUSB,	run	the	
command	‘pip	install	pyusb’.	
	
Software	Requirements	and	Setup	(Linux)	
	
This	tutorial	is	assuming	Ubuntu	Linux,	but	Ubuntu’s	package	manager	can	be	substituted	by	
your	Linux	distribution’s	package	manager	and	associated	command	flags.	Ubuntu	uses	‘apt-
get’	and	the	‘install’	command	line	flag	to	signal	installation	of	requested	packages.	
	
Install	python3,	pip,	and	libusb:	‘sudo	apt-get	install	python3	python3-pip	libusb-dev’	
	
Install	pyusb	using	pip:	‘sudo	pip3	install	pyusb’	
	
Using	Python	to	talk	to	the	device	
	
The	following	python	code	should	run	on	all	three	platforms.	The	program	activates	the	USB	
device	assigned	to	our	vendor	and	product	ID	and	finds	the	IN	and	OUT	endpoints.	Then	it	waits	
for	user	input,	sends	the	entered	endpoint,	and	prints	out	the	received	input,	assuming	the	
received	input	is	of	the	same	size	as	the	sent	output.	Certain	Linux	distributions	and	setups	may	
require	a	‘sudo’	before	running	the	code	to	give	python	the	necessary	privileges	to	access	USB	
devices.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Here	is	the	python	script:		
	
import usb.core
import usb.util
import array

search for our device by product and vendor ID
dev = usb.core.find(idVendor=0x4B4, idProduct=0x80)

#raise error if device is not found
if dev is None:
 raise ValueError('Device not found')

set the active configuration (basically, start the device)
dev.set_configuration()

get interface 0, alternate setting 0
intf = dev.get_active_configuration()[(0, 0)]

find the first (and in this case only) OUT endpoint in our interface
epOut = usb.util.find_descriptor(
 intf,
 custom_match= \
 lambda e: \
 usb.util.endpoint_direction(e.bEndpointAddress) == \
 usb.util.ENDPOINT_OUT)

find the first (and in this case only) IN endpoint in our interface
epIn = usb.util.find_descriptor(
 intf,
 custom_match= \
 lambda e: \
 usb.util.endpoint_direction(e.bEndpointAddress) == \
 usb.util.ENDPOINT_IN)

make sure our endpoints were found
assert epOut is not None
assert epIn is not None

print("Message: ")
t = input() # get the user input
i = len(t)
epOut.write(t) # send it
print("Received: " + str(epIn.read(i))) # receive the echo

	
	
	
	
	
	
	
	

Remarks	
	
• This	tutorial	borrows	heavily	from	Craig	Cheney’s	2013	USB	tutorial	written	for	6.115	
• A	more	in-depth	tutorial	for	using	the	PyUSB	library	(which	uses	the	libusb	backend)	can	be	

found	at	https://github.com/walac/pyusb/blob/master/docs/tutorial.rst	
• There	are	various	transfer	types	to	explore	that	may	be	more	suitable	for	your	application.	

A	good	introduction	to	USB	can	be	found	at	
http://www.beyondlogic.org/usbnutshell/usb1.shtml	

• DMA	should	also	be	explored	as	a	more	efficient	way	of	moving	large	amounts	of	data	into	
and	out	of	the	USB	communication	buffers.	

	

