
Web Serial API
Living document

Draft Community Group Report 29 August 2024

Latest published version:
none

Latest editor's draft:
https://wicg.github.io/serial/

Editor:
See contributors on GH

Feedback:
GitHub wicg/serial (pull requests, new issue, open issues)

Copyright © 2024 the Contributors to the Web Serial API Specification, published by the Web Platform

Incubator Community Group under the W3C Community Contributor License Agreement (CLA). A

human-readable summary is available.

Abstract

The Serial API provides a way for websites to read and write from a serial device

through script. Such an API would bridge the web and the physical world, by

allowing documents to communicate with devices such as microcontrollers, 3D

printers, and other serial devices. There is also a companion explainer document.

Status of This Document

This specification was published by the Web Platform Incubator Community Group.

It is not a W3C Standard nor is it on the W3C Standards Track. Please note that

under the W3C Community Contributor License Agreement (CLA) there is a limited

opt-out and other conditions apply. Learn more about W3C Community and Business

Groups.

This is a work in progress. All contributions welcome.

1.

1.1

2.

2.1

3.

3.1

3.1.1

3.1.2

3.2

3.3

3.4

4.

4.1

4.2

4.3

4.3.1

4.4

4.4.1

4.4.1.1

4.4.1.2

4.5

4.6

4.7

4.8

4.8.1

4.9

4.9.1

GitHub Issues are preferred for discussion of this specification.

Table of Contents

Abstract

Status of This Document

Extensions to the Navigator interface

serial attribute

Extensions to the WorkerNavigator interface

serial attribute

Serial interface

requestPort() method

SerialPortRequestOptions dictionary

SerialPortFilter dictionary

getPorts() method

onconnect attribute

ondisconnect attribute

SerialPort interface

onconnect attribute

ondisconnect attribute

getInfo() method

SerialPortInfo dictionary

open() method

SerialOptions dictionary

ParityType enum

FlowControlType enum

connected attribute

readable attribute

writable attribute

setSignals() method

SerialOutputSignals dictionary

getSignals() method

SerialInputSignals dictionary

4.10

4.11

5.

6.

6.1

7.

8.

9.

A.

B.

B.1

B.2

close() method

forget() method

Blocklist

Integrations

Permissions Policy

Security considerations

Privacy considerations

Conformance

Acknowledgements

References

Normative references

Informative references

When getting, the serial attribute always returns the same instance of the Serial

object.

When getting, the serial attribute always returns the same instance of the Serial

object.

The requestPort() method steps are:

EXAMPLE 1

When the user first visits a site it will not have permission to access any serial

devices. A site must first call requestPort(). This call gives the browser the

opportunity to prompt the user for which device the site should be allowed to

control. If the site is designed to work with a particular device which is always

connected via USB the site can provide a filter restricting the devices the user can

select to only those that would be compatible. For example, a site which

programs Arduino-powered robots could specify a like the following to limit the

set of selectable ports to only USB devices with Arduino's USB vendor ID,

const filter = { usbVendorId: 0x2341 };

const port = await navigator.serial.requestPort({ filters: [filter

If on the other hand the site expects to be used with a wide variety of devices or

devices connected through a USB to serial converter it may specify no filter at all

and rely on the user to select the appropriate device,

const port = await navigator.serial.requestPort();

Asking the user to choose a port requires showing a prompt to the user and so the

site must have transient activation from something like the user clicking a button.

<button id="connect">Connect</button>

const connectButton = document.getElementById("connect");

connectButton.addEventListener('click', () => {

try {

const port = await navigator.serial.requestPort();

// Continue connecting to the device attached to |port|.

 } catch (e) {

// The prompt has been dismissed without selecting a device.

 }

});

The user may choose not to select a device, in which case the Promise will be

rejected with a "NotFoundError" DOMException that the site must handle.

1. Let be a new promise.

2. If this's relevant global object's associated Document is not allowed to use the

policy-controlled feature named "serial", reject with a

"SecurityError" DOMException and return .

3. If the relevant global object of this does not have transient activation, reject

 with a "SecurityError" DOMException and return .

4. If ["filters"] is present, then for each in ["filters"] run

the following steps:

1. If ["bluetoothServiceClassId"] is present:

1. If ["usbVendorId"] is present, reject with a TypeError

and return .

2. If ["usbProductId"] is present, reject with a TypeError

and return .

2. If ["usbVendorId"] is not present, reject with a TypeError

and return .

NOTE

This check implements the combined rule that a SerialPortFilter

cannot be empty and if usbProductId is specified then usbVendorId

must also be specified.

5. Run the following steps in parallel:

1. Let be an empty list.

2. For each Bluetooth device registered with the system:

1. For each BluetoothServiceUUID supported by the device:

1. If is not a blocked Bluetooth service class UUID:

If is equal to the Serial Port Profile service class ID, or

["allowedBluetoothServiceClassIds"] is present

and contains :

1. Let be a SerialPort representing the service on

the Bluetooth device.

2. Append to .

3. For each available non-Bluetooth serial port:

1. Let be a SerialPort representing the port.

promise

promise

promise

promise promise

options filter options

filter

filter promise

promise

filter promise

promise

filter promise

promise

allPorts

uuid

uuid

uuid

options

uuid

port

port allPorts

port

2. Append to .

4. Prompt the user to grant the site access to a serial port by presenting them

with a list of ports in that match any filter in ["filters"] if

present and otherwise.

5. If the user does not choose a port, queue a global task on the relevant

global object of this using the serial port task source to reject with

a "NotFoundError" DOMException and abort these steps.

6. Let be a SerialPort representing the port chosen by the user.

7. Queue a global task on the relevant global object of this using the serial

port task source to resolve with .

6. Return .

A serial port is available if it is a wired serial port and the port is physically

connected to the system, or if it is a wireless serial port and the wireless device

hosting the port is registered with the system.

filters member
Filters for serial ports

allowedBluetoothServiceClassIds member
A list of BluetoothServiceUUID values representing Bluetooth service class

IDs. Bluetooth ports with custom service class IDs are excluded from the list of

ports presented to the user unless the service class ID is included in this list.

port allPorts

allPorts options

allPorts

promise

port

promise port

promise

usbVendorId member
USB Vendor ID

usbProductId member
USB Product ID

bluetoothServiceClassId member
Bluetooth service class ID

A serial port matches the filter if these steps return true:

1. Let be the result of calling .getInfo().

2. If ["bluetoothServiceClassId"] is present:

1. If the serial port is not part of a Bluetooth device, return false.

2. If ["bluetoothServiceClassId"] is equal to

["bluetoothServiceClassId"], return true.

3. Otherwise, return false.

3. If ["usbVendorId"] is not present, return true.

4. If the serial port is not part of a USB device, return false.

5. If ["usbVendorId"] is not equal to ["usbVendorId"], return false.

6. If ["usbProductId"] is not present, return true.

7. If ["usbProductId"] is not equal to ["usbProductId"], return false.

8. Otherwise, return true.

A serial port matches any filter in a sequence of SerialPortFilter if these

steps return true:

1. For each in the sequence, run these sub-steps:

1. If matches the filter , return true.

2. Return false.

The getPorts() method steps are:

1. Let be a new promise.

2. If this's relevant global object's associated Document is not allowed to use the

policy-controlled feature named "serial", reject with a

"SecurityError" DOMException and return .

3. Run the following steps in parallel:

filter

port filter

1. Let be the sequence of available serial ports which the user

has allowed the site to access as the result of a previous call to

requestPort().

2. Let be the sequence of the SerialPorts representing the ports in

.

3. Queue a global task on the relevant global object of this using the serial

port task source to resolve with .

4. Return .

onconnect is an event handler IDL attribute for the connect event type.

ondisconnect is an event handler IDL attribute for the disconnect event type.

availablePorts

ports

availablePorts

promise ports

promise

Methods on this interface typically complete asynchronously, queuing work on the

serial port task source.

The get the parent algorithm for SerialPort returns the same Serial instance that is

returned by the SerialPort's relevant global object's Navigator object's serial

getter.

Instances of SerialPort are created with the internal slots described in the following

table:

Internal slot
Initial

value
Description (non-normative)

[[state]] "closed" Tracks the active state of the SerialPort

[[bufferSize]] undefined
The amount of data to buffer for transmit and

receive

[[connected]] false
A flag indicating the logical connection state

of serial port

[[readable]] null
A ReadableStream that receives data from

the port

[[readFatal]] false
A flag indicating that the port has

encountered a fatal read error

[[writable]] null
A WritableStream that transmits data to the

port

[[writeFatal]] false
A flag indicating that the port has

encountered a fatal write error

[[pendingClosePromise]] null
A Promise used to wait for readable and

writable to close

onconnect is an event handler IDL attribute for the connect event type.

When a serial port that the user has allowed the site to access as the result of a

previous call to requestPort() becomes logically connected, run the following

steps:

Promise<undefined> forget();

};

1. Let be a SerialPort representing the port.

2. Set .[[connected]] to true.

3. Fire an event named connect at with its bubbles attribute initialized to

true.

A serial port is logically connected if it is a wired serial port and the port is

physically connected to the system, or if it is a wireless serial port and the system has

active connections to the wireless device (e.g. an open Bluetooth L2CAP channel).

ondisconnect is an event handler IDL attribute for the disconnect event type.

When a serial port that the user has allowed the site to access as the result of a

previous call to requestPort() is no longer logically connected, run the following

steps:

1. Let be a SerialPort representing the port.

2. Set .[[connected]] to false.

3. Fire an event named disconnect at with its bubbles attribute initialized to

true.

The getInfo() method steps are:

1. Let be a new SerialPortInfo dictionary.

2. If the port is part of a USB device, perform the following steps:

1. Set ["usbVendorId"] to the vendor ID of the device.

2. Set ["usbProductId"] to the product ID of the device.

3. If the port is a service on a Bluetooth device, perform the following steps:

1. Set ["bluetoothServiceClassId"] to the service class UUID of the

Bluetooth service.

4. Return .

port

port

port

usbVendorId member
If the port is part of a USB device this member will be the 16-bit vendor ID of

that device. Otherwise it will be undefined.

usbProductId member
If the port is part of a USB device this member will be the 16-bit product ID of

that device. Otherwise it will be undefined.

bluetoothServiceClassId member
If the port is a service on a Bluetooth device this member will be a

BluetoothServiceUUID containing the service class UUID. Otherwise it will be

undefined.

The open() method steps are:

1. Let be a new promise.

2. If this.[[state]] is not "closed", reject with an

"InvalidStateError" DOMException and return .

3. If ["dataBits"] is not 7 or 8, reject with TypeError and return

.

4. If ["stopBits"] is not 1 or 2, reject with TypeError and return

.

5. If ["bufferSize"] is 0, reject with TypeError and return

.

6. Optionally, if ["bufferSize"] is larger than the implementation is able to

support, reject with a TypeError and return .

7. Set this.[[state]] to "opening".

8. Perform the following steps in parallel.

1. Invoke the operating system to open the serial port using the connection

parameters (or their defaults) specified in .

2. If this fails for any reason, queue a global task on the relevant global object

of this using the serial port task source to reject with a

"NetworkError" DOMException and abort these steps.

3. Set this.[[state]] to "opened".

4. Set this.[[bufferSize]] to ["bufferSize"].

EXAMPLE 3

Before communicating on a serial port it must be opened. Opening the port

allows the site to specify the necessary parameters which control how data is

transmitted and received. Developers should check the documentation for the

device they are connecting to for the appropriate parameters.

await port.open({ baudRate: /* pick your baud rate */ });

Once open() has resolved the readable and writable attributes can be accessed

to get the ReadableStream and WritableStream instances for receiving data

from and sending data to the connected device.

promise

promise

promise

options promise

promise

options promise

promise

options promise

promise

options

promise promise

options

promise

options

5. Queue a global task on the relevant global object of this using the serial

port task source to resolve with undefined.

9. Return .

baudRate member
A positive, non-zero value indicating the baud rate at which serial

communication should be established.

NOTE

baudRate is the only required member of this dictionary. While there are

common default for other connection parameters it is important for

developers to consider and consult with the documentation for devices they

intend to connect to determine the correct values. While some values are

common there is no standard baud rate. Requiring this parameter reduces the

potential for confusion if an arbitrary default were chosen by this

specification.

dataBits member
The number of data bits per frame. Either 7 or 8.

stopBits member
The number of stop bits at the end of a frame. Either 1 or 2.

parity member
The parity mode.

bufferSize member

promise

promise

A positive, non-zero value indicating the size of the read and write buffers that

should be created.

flowControl member
The flow control mode.

none

No parity bit is sent for each data word.

even

Data word plus parity bit has even parity.

odd

Data word plus parity bit has odd parity.

none

No flow control is enabled.

hardware

Hardware flow control using the RTS and CTS signals is enabled.

The connected getter steps are:

1. Return this.[[connected]].

EXAMPLE 4

An application receiving data from a serial port will typically use a nested pair of

loops like this,

while (port.readable) {

const reader = port.readable.getReader();

try {

while (true) {

const { value, done } = await reader.read();

if (done) {

// |reader| has been canceled.

break;

 }

// Do something with |value|...

 }

 } catch (error) {

// Handle |error|...

 } finally {

 reader.releaseLock();

 }

}

The inner loop will read chunks of data from the port until an error is

encountered, at which point the code in the "catch" block will be executed. The

outer loop handles recoverable errors such as parity check failures by opening a

new reader. Fatal errors will cause readable to become null and the loop to end.

As long as the serial port is open it can continue to produce data and the amount

of data in each of the chunks returned by read() will be essentially arbitrary

based on the timing of when it is called. It is up to the device and the code

communicating with it to decide what constitutes a complete message. For

example, a device might communicate with the host using ASCII-formatted text

where each message ends with a newline (or the sequence "\r\n"). A pipeline of

TransformStreams can be used to automatically convert the Uint8Array chunks

provided by readable into DOMStrings containing an entire line of text each.

class LineBreakTransformer {

constructor() {

this.container = '';

 }

transform(chunk, controller) {

this.container += chunk;

const lines = this.container.split('\r\n');

this.container = lines.pop();

 lines.forEach(line => controller.enqueue(line));

 }

flush(controller) {

 controller.enqueue(this.container);

 }

}

const lineReader = port.readable

 .pipeThrough(new TextDecoderStream())

 .pipeThrough(new TransformStream(new LineBreakTransformer()))

 .getReader();

Some other ways of encoding message boundaries are to prefix each message

with its length or to wait a defined length of time before transmitting the next

message. Implementing a TransformStream for these types of message

boundaries is left as an exercise for the reader.

While the read() method is asynchronous and does not block execution, in code

using async/await syntax it can seem as if it does. In this situation it may be

helpful to implement a timeout which will allow the code to continue execution if

no data is received for a period of time. The example below uses the

releaseLock() method to interrupt a call to read() after a timer expires. This

will not close the stream and so any data received after the timeout can still be

read later after calling getReader() again.

async function readWithTimeout(port, timeout) {

const reader = port.readable.getReader();

const timer = setTimeout(() => {

 reader.releaseLock();

 }, timeout);

const result = await reader.read();

clearTimeout(timer);

 reader.releaseLock();

return result;

}

The readable getter steps are:

1. If this.[[readable]] is not null, return this.[[readable]].

2. If this.[[state]] is not "opened", return null.

3. If this.[[readFatal]] is true, return null.

4. Let be a new ReadableStream.

5. Let be the following steps:

1. Let be the desired size to fill up to the high water mark for this.

[[readable]].

2. If this.[[readable]]'s current BYOB request view is non-null, then set

 to this.[[readable]]'s current BYOB request view's byte

length.

3. Run the following steps in parallel:

1. Invoke the operating system to read up to bytes from the

port, putting the result in the byte sequence .

NOTE

this.[[state]] becoming "forgotten" must be treated as if

.

2. Queue a global task on the relevant global object of this using the

serial port task source to run the following steps:

1. If no errors were encountered, then:

1. If this.[[readable]]'s current BYOB request view is non-

null, then write into this.[[readable]]'s current

BYOB request view, and set to this.[[readable]]'s

current BYOB request view.

2. Otherwise, set to the result of creating a Uint8Array

from in this's relevant Realm.

3. Enqueue into this.[[readable]].

2. If a buffer overrun condition was encountered, invoke error on

This feature of releaseLock() was added in whatwg/streams#1168 and has only

recently been implemented by browsers.

stream

pullAlgorithm

desiredSize

desiredSize

desiredSize

bytes

the

port was disconnected

bytes

view

view

bytes

view

this.[[readable]] with a "BufferOverrunError"

DOMException and invoke the steps to handle closing the

readable stream.

3. If a break condition was encountered, invoke error on this.

[[readable]] with a "BreakError" DOMException and invoke

the steps to handle closing the readable stream.

4. If a framing error was encountered, invoke error on this.

[[readable]] with a "FramingError" DOMException and

invoke the steps to handle closing the readable stream.

5. If a parity error was encountered, invoke error on this.

[[readable]] with a "ParityError" DOMException and invoke

the steps to handle closing the readable stream.

6. If an operating system error was encountered, invoke error on

this.[[readable]] with an "UnknownError" DOMException and

invoke the steps to handle closing the readable stream.

7. If , run the following steps:

1. Set this.[[readFatal]] to true,

2. Invoke error on this.[[readable]] with a "NetworkError"

DOMException.

3. Invoke the steps to handle closing the readable stream.

4. Return a promise resolved with undefined.

NOTE

The Promise returned by this algorithm is immediately resolved so that it

does not block canceling the stream. [STREAMS] specifies that this

algorithm will not be invoked again until a chunk is enqueued.

6. Let be the following steps:

1. Let be a new promise.

2. Run the following steps in parallel.

1. Invoke the operating system to discard the contents of all software and

hardware receive buffers for the port.

2. Queue a global task on the relevant global object of this using the

serial port task source to run the following steps:

the port was disconnected

cancelAlgorithm

promise

1. Invoke the steps to handle closing the readable stream.

2. Resolve with undefined.

3. Return .

7. Set up with byte reading support with pullAlgorithm set to

, cancelAlgorithm set to , and highWaterMark set

to this.[[bufferSize]].

8. Set this.[[readable]] to .

9. Return .

To handle closing the readable stream perform the following steps:

1. Set this.[[readable]] to null.

2. If this.[[writable]] is null and this.[[pendingClosePromise]] is not null,

resolve this.[[pendingClosePromise]] with undefined.

promise

promise

stream

pullAlgorithm cancelAlgorithm

stream

stream

The writable getter steps are:

1. If this.[[writable]] is not null, return this.[[writable]].

2. If this.[[state]] is not "opened", return null.

3. If this.[[writeFatal]] is true, return null.

4. Let be a new WritableStream.

5. Let be 's signal.

6. Let be the following steps, given :

1. Let be a new promise.

2. Assert: is not aborted.

3. If cannot be converted to an IDL value of type BufferSource, reject

 with a TypeError and return . Otherwise, save the result of

the conversion in .

4. Get a copy of the buffer source and save the result in .

5. In parallel, run the following steps:

1. Invoke the operating system to write to the port. Alternately,

store the chunk for future coalescing.

NOTE

The operating system may return from this operation once

has been queued for transmission rather than after it has been

transmitted.

NOTE

this.[[state]] becoming "forgotten" must be treated as if

.

2. Queue a global task on the relevant global object of this using the

serial port task source to run the following steps:

1. If the chunk was successfully written, or was stored for future

coalescing, resolve with undefined.

stream

signal stream

writeAlgorithm chunk

promise

signal

chunk

promise promise

source

source bytes

bytes

bytes

the

port was disconnected

promise

NOTE

[STREAMS] specifies that will only be

invoked after the Promise returned by a previous invocation

of this algorithm has resolved. For efficiency an

implementation is allowed to resolve this Promise early in

order to coalesce multiple chunks waiting in the

WritableStream's internal queue into a single request to the

operating system.

2. If an operating system error was encountered, reject with

an "UnknownError" DOMException.

3. If , run the following steps:

1. Set this.[[writeFatal]] to true.

2. Reject with a "NetworkError" DOMException.

3. Invoke the steps to handle closing the writable stream.

4. If is aborted, reject with 's abort reason.

6. Return .

7. Let be the following steps:

1. Let be a new promise.

2. Run the following steps in parallel.

1. Invoke the operating system to discard the contents of all software and

hardware transmit buffers for the port.

2. Queue a global task on the relevant global object of this using the

serial port task source to run the following steps:

1. Invoke the steps to handle closing the writable stream.

2. Resolve with undefined.

3. Return .

8. Let be the following steps:

1. Let be a new promise.

2. Run the following steps in parallel.

1. Invoke the operating system to flush the contents of all software and

hardware transmit buffers for the port.

2. Queue a global task on the relevant global object of this using the

writeAlgorithm

promise

the port was disconnected

promise

signal promise signal

promise

abortAlgorithm

promise

promise

promise

closeAlgorithm

promise

serial port task source to run the following steps:

1. Invoke the steps to handle closing the writable stream.

2. If is aborted, reject with 's abort reason.

3. Otherwise, resolve with undefined.

3. Return .

9. Set up with writeAlgorithm set to , abortAlgorithm set to

, closeAlgorithm set to , highWaterMark set to

this.[[bufferSize]], and sizeAlgorithm set to a byte-counting size algorithm.

10. Add the following abort steps to :

1. Cause any invocation of the operating system to write to the port to return

as soon as possible no matter how much data has been written.

11. Set this.[[writable]] to .

12. Return .

To handle closing the writable stream perform the following steps:

1. Set this.[[writable]] to null.

2. If this.[[readable]] is null and this.[[pendingClosePromise]] is not null,

resolve this.[[pendingClosePromise]] with undefined.

The setSignals() method steps are:

signal promise signal

promise

promise

stream writeAlgorithm

abortAlgorithm closeAlgorithm

signal

stream

stream

1. Let be a new promise.

2. If this.[[state]] is not "opened", reject with an

"InvalidStateError" DOMException and return .

3. If all of the specified members of are not present reject with

TypeError and return .

4. Perform the following steps in parallel:

1. If ["dataTerminalReady"] is present, invoke the operating system

to either assert (if true) or deassert (if false) the "data terminal ready" or

"DTR" signal on the serial port.

2. If ["requestToSend"] is present, invoke the operating system to

either assert (if true) or deassert (if false) the "request to send" or "RTS"

signal on the serial port.

3. If ["break"] is present, invoke the operating system to either assert

(if true) or deassert (if false) the "break" signal on the serial port.

NOTE

The "break" signal is typically implemented as an in-band signal by

holding the transmit line at the "mark" voltage and thus prevents data

transmission for as long as it remains asserted.

4. If the operating system fails to change the state of any of these signals for

any reason, queue a global task on the relevant global object of this using

the serial port task source to reject with a "NetworkError"

DOMException.

5. Queue a global task on the relevant global object of this using the serial

port task source to resolve with undefined.

5. Return .

promise

promise

promise

signals promise

promise

signals

signals

signals

promise

promise

promise

dataTerminalReady

Data Terminal Ready (DTR)

requestToSend

Request To Send (RTS)

break

Break

The getSignals() method steps are:

1. Let be a new promise.

2. If this.[[state]] is not "opened", reject with an

"InvalidStateError" DOMException and return .

3. Perform the following steps in parallel:

1. Query the operating system for the status of the control signals that may be

asserted by the device connected to the serial port.

2. If the operating system fails to determine the status of these signals for any

reason, queue a global task on the relevant global object of this using the

serial port task source to reject with a "NetworkError"

DOMException and abort these steps.

3. Let be a new SerialInputSignals.

4. Set ["dataCarrierDetect"] to true if the "data carrier detect" or

"DCD" signal has been asserted by the device, and false otherwise.

5. Set ["clearToSend"] to true if the "clear to send" or "CTS" signal

has been asserted by the device, and false otherwise.

6. Set ["ringIndicator"] to true if the "ring indicator" or "RI" signal

has been asserted by the device, and false otherwise.

7. Set ["dataSetReady"] to true if the "data set ready" or "DSR"

signal has been asserted by the device, and false otherwise.

8. Queue a global task on the relevant global object of this using the serial

boolean break;

};

port task source to resolve with .

4. Return .

dataCarrierDetect member
Data Carrier Detect (DCD)

clearToSend member
Clear To Send (CTS)

ringIndicator member
Ring Indicator (RI)

dataSetReady member
Data Set Ready (DSR)

promise signals

promise

EXAMPLE 7

When communication with the port is no longer required it can be closed and the

associated resources released by the system.

Calling port.close() implicitly invokes port.readable.cancel() and

port.writable.abort() in order to clear any buffered data. If the application

has called port.readable.getReader() or port.writable.getWriter() the

stream is locked and the port cannot be closed. This forces the developer to

decide how to handle any read or write operations that are in progress. For

example, to ensure that all buffered data has been transmitted before the port is

closed the application must await the Promise returned by writer.close().

const encoder = new TextEncoder();

const writer = port.writable.getWriter();

writer.write(encoder.encode("A long message that will take..."));

await writer.close();

await port.close();

To discard any unsent data the application could instead call writer.abort().

If a TransformStream is being piped to port.writable then waiting for the

Promise returned by writer.close() to resolve is insufficient. The application

must wait for the pipe chain to close by waiting for the Promise returned by

pipeTo() to resolve instead.

const encoder = new TextEncoderStream();

const writableStreamClosed = encoder.readable.pipeTo(port.writable

const writer = encoder.writable.getWriter();

writer.write("A long message that will take...");

writer.close();

await writableStreamClosed;

await port.close();

If a loop is being used to read chunks from the port, as is done in Example 4, then

it must be exited before calling port.close().

let keepReading = true;

let reader;

async function readUntilClosed() {

The close() method steps are:

1. Let be a new promise.

while (port.readable && keepReading) {

 reader = port.readable.getReader();

try {

while (true) {

const { value, done } = await reader.read();

if (done) {

// |reader| has been canceled.

break;

 }

// Do something with |value|...

 }

 } catch (error) {

// Handle |error|...

 } finally {

 reader.releaseLock();

 }

 }

await port.close();

}

const closed = readUntilClosed();

// Sometime later...

keepReading = false;

reader.cancel();

await closed;

Calling reader.cancel() causes the call to reader.read() to return

immediately, exiting the inner loop and calling reader.releaseLock(). The

outer loop then exits because keepReading has been set to false and with the

stream unlocked port.close() can complete successfully.

While it is also possible to call port.close() immediately after awaiting the

Promise returned by reader.cancel() it is better to place the call to

port.close() as the last step of readUntilClosed() so that the port is also

closed when a fatal error is encountered and port.readable becomes null.

promise

2. If this.[[state]] is not "opened", reject with an

"InvalidStateError" DOMException and return .

3. Let be the result of invoking cancel on this.[[readable]] or a

promise resolved with undefined if this.[[readable]] is null.

4. Let be the result of invoking abort on this.[[writable]] or a

promise resolved with undefined if this.[[writable]] is null.

5. Let be a new promise.

6. If this.[[readable]] and this.[[writable]] are null, resolve

 with undefined.

7. Set this.[[pendingClosePromise]] to .

8. Let be the result of getting a promise to wait for all with

« , , ».

9. Set this.[[state]] to "closing".

10. React to .

If was fulfilled, then:

1. Run the following steps in parallel:

1. Invoke the operating system to close the serial port and release

any associated resources.

2. Set this.[[state]] to "closed".

3. Set this.[[readFatal]] and this.[[writeFatal]] to false.

4. Set this.[[pendingClosePromise]] to null.

5. Queue a global task on the relevant global object of this using the

serial port task source to resolve with undefined.

If was rejected with reason , then:

1. Set this.[[pendingClosePromise]] to null.

2. Queue a global task on the relevant global object of this using the

serial port task source to reject with .

11. Return .

promise

promise

cancelPromise

abortPromise

pendingClosePromise

pendingClosePromise

pendingClosePromise

combinedPromise

cancelPromise abortPromise pendingClosePromise

combinedPromise

combinedPromise

promise

combinedPromise r

promise r

promise

The forget() method steps are:

1. If the user agent can't perform this action (e.g. permission was granted by

administrator policy), return a promise resolved with undefined.

2. Run the following steps in parallel:

1. Set this.[[state]] to "forgetting".

2. Remove this from the sequence of serial ports on the system which the user

has allowed the site to access as the result of a previous call to

requestPort().

3. Set this.[[state]] to "forgotten".

4. Queue a global task on the relevant global object of this using the serial

port task source to resolve with undefined.

3. Return .

This specification relies on a blocklist file in the https://github.com/WICG/serial

repository to restrict the set of ports a website can access.

The result of parsing the Bluetooth service class ID blocklist at a URL is a list of

UUID values representing custom service IDs.

The Serial Port Profile service class ID is a BluetoothServiceUUID with value

"00001101‐0000‐1000‐8000‐00805f9b34fb".

EXAMPLE 8

It is posssible to voluntarily revoke a permission to a serial port that was granted

by a user.

// Request a serial port.

const port = await navigator.serial.requestPort();

// Then later... revoke permission to the serial port.

await port.forget();

promise

promise

A {{BluetoothServiceUUID} is a blocked Bluetooth service class

UUID if the following steps return true:

1. Let be the result of calling BluetoothUUID.getService() with

.

2. Let be the result of parsing the Bluetooth service class ID blocklist at

https://github.com/WICG/serial/blob/main/blocklist.txt.

3. If contains , return true.

4. If is the Serial Port Profile service class ID, return false.

5. If ends with "‐0000‐1000‐8000‐00805f9b34fb", return true.

6. Otherwise, return false.

This specification defines a feature that controls whether the methods exposed by the

serial attribute on the Navigator object may be used.

The feature name for this feature is "serial"`.

The default allowlist for this feature is 'self'.

This section is non-normative.

This API poses similar a security risk to [WEB-BLUETOOTH] and [WEBUSB] and

so lessons from those are applicable here. The primary threats are:

A malicious site that has tricked the user into granting it access to a device using

the device's intended capabilities for malicious purposes. For example, a robot

causing physical damage.

serviceUuid

uuid

serviceUuid

blocklist

blocklist uuid

uuid

uuid

A malicious site that has tricked the user into granting it access to a device

installing its own firmware into the device in order to modify the device's

intended capabilities for malicious purposes or to attack the host to which it is

connected. For example, triggering a buffer overflow in other host software

which communicates with the device.

Malicious code injected into a trusted site which has been granted access to the

device doing any of the above. For example, an online firmware update utility

being hacked to deliver malicious firmware.

An attacker convincing the user to connect a malicious device to their system

which colludes with a malicious or exploited site to create a web-based channel

for communicating back to the attacker.

The primary mitigation to all of these attacks is the requestPort() pattern, which

requires user interaction and only supports granting access to a single device at a

time. This prevents drive-by attacks because a site cannot enumerate all connected

devices to determine whether a vulnerable device exists and must instead proactively

inform the user that it desires access. Implementations may also provide a visual

indication that a site is currently communicating with a device and controls for

revoking that permission at any time.

This specification requires the site to be served from a secure context in order to

prevent malicious code from being injected by a network-based attacker. This

ensures that the site identity shown to the user when making permission decisions is

accurate. This specification also requires top-level documents to opt-in through

[PERMISSIONS-POLICY] before allowing a cross-origin iframe to use the API.

When combined with [CSP3] these mechanisms provide protection against malicious

code injection attacks.

The remaining concern is the exploitation of a connected device through a phishing

attack that convinces the user to grant a malicious site access to a device. These

attacks can be used to either exploit the device’s capabilities as designed or to install

malicious firmware on the device that will in turn attack the host computer. Host

software may be vulnerable to attack because it improperly validates input from

connected devices. Security research in this area has encouraged software vendors to

treat connected devices as untrustworthy.

There is no mechanism that will completely prevent this type of attack because data

sent from a page to the device is an opaque sequence of bytes. Efforts to block a

particular type of data from being sent are likely be met by workarounds on the part

of device manufacturers who nevertheless want to send this type of data to their

devices.

User agents can implement additional mechanisms to control access to devices:

A setting which prevents sites from calling requestPort() unless added to an

explicit allow list.

Systems administrators could apply such a setting across their managed fleet

using enterprise policy controls. Such controls may allow the administrator to

automatically grant selected sites access to particular devices and no others.

A list of device IDs for hardware which is known to be exploitable could be

deployed with the user agent. Connections to listed devices would be blocked.

An implementation could use its automatic update or experiment management

system to deploy updates to this list on the fly to block an active attack.

Implementations of [WEB-BLUETOOTH] and [WEBUSB] have experimented with

these mitigations however there are limits to their effectiveness. First, it is difficult to

define whether a device is exploitable. For example, this API will allow a site to

upload firmware to a microcontroller development board. This is a key use case for

this API as these devices are common in the educational and hobbyist markets. These

boards do not implement firmware signature verification and so can easily be turned

into a malicious device. These boards are clearly exploitable but should not be

blocked.

In addition, maintaining a list of vulnerable devices works well for USB and

Bluetooth because those protocols define out-of-band mechanisms to gather device

metadata. The make and model of such devices can thus be easily identified even if

they present themselves to the host as a virtual serial ports. However, there are

generic USB- or Bluetooth-to-serial adapters as well as systems with "real" serial

ports using a DB-25, DE-9 or RJ-45 connector. For these there is no metadata that

can be read to determine the identity of the device connected to the port and so

blocking access to these is not possible.

This section is non-normative.

Serial ports and serial devices contain two kinds of sensitive information. When a

port is a USB or Bluetooth device there are identifiers such as the vendor and product

IDs (which identify the make and model) as well as a serial number or MAC address.

The serial device itself may also have its own identifier that is available through

commands sent via the serial port. The device may also store other private

information which may or may not be identifying.

In order to manage device permissions an implementation will likely store device

identifiers such as the USB vendor ID, product ID and serial number in its user

preferences file to be used as stable identifiers for devices the user has granted sites

access to. These would not be shared directly with sites and would be cleared when

permission is revoked or site data in general is cleared.

Commands a page can send to the device after it has been granted access a page may

also be able to access any of the other sensitive information stored by the device. For

the reasons mentioned in 7. Security considerations it is impractical and undesirable

to attempt to prevent a page from accessing this information.

Implementations should provide users with complete control over which devices a

site can access and not grant device access without user interaction. This is the

intention of the requestPort() method. This prevents a site from silently

enumerating and collecting data from all connected devices. This is similar to the file

picker UI. A site has no knowledge of the filesystem, only the files or directories that

have been chosen by the user. An implementation could notify the user when a site is

using these permissions with an indicator icon appearing in the tab or address bar.

Implementations that provide a "private" or "incognito" browsing mode should

ensure that permissions from the user's normal profile do not carry over to such a

session and permissions granted in this session are not persisted when the session

ends. An implementation may warn the user when granting access to a device in such

as session as, similar to entering identifying information by hand, device identifiers

and other unique properties available from communicating with the device

mentioned previously can be used to identify the user between sessions.

Users may be surprised by the capabilities granted by this API if they do not

understand the ways in which granting access to a device breaks traditional isolation

boundaries in the web security model. Security UI and documentation should explain

that granting a site access to a device could give the site full control over the device

and any data contained within.

As well as sections marked as non-normative, all authoring guidelines, diagrams,

examples, and notes in this specification are non-normative. Everything else in this

specification is normative.

The following people contributed to the development of this document.

Anatol Ulrich

Chris Mumford

Clément Menard

Domenic Denicola

Dominique Hazael-Massieux

Florian Loitsch

Florian Scholz

Francis Gulotta

François Beaufort

Keavon Chambers

Kenneth Rohde Christiansen

Marcos Cáceres

marcoscaceres-remote

Matt Reynolds

melhuishj

Michael Kohler

Ms2ger

Reilly Grant

Rick Waldron

Sankha Narayan Guria

Simon Pieters

Suz Hinton

Travis Leithead

Vincent Scheib

[dom]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL: https://

dom.spec.whatwg.org/

[html]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip

Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL: https://

html.spec.whatwg.org/multipage/

[infra]
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living

Standard. URL: https://infra.spec.whatwg.org/

[PERMISSIONS-POLICY]
Permissions Policy. Ian Clelland. W3C. 24 July 2024. W3C Working Draft.

URL: https://www.w3.org/TR/permissions-policy-1/

[STREAMS]
Streams Standard. Adam Rice; Domenic Denicola; Mattias Buelens; 吉野剛史

(Takeshi Yoshino). WHATWG. Living Standard. URL: https://

streams.spec.whatwg.org/

[WEB-BLUETOOTH]
Web Bluetooth. Jeffrey Yasskin. W3C Web Bluetooth Community Group. Draft

Community Group Report. URL: https://webbluetoothcg.github.io/web-

bluetooth/

[WEBIDL]
Web IDL Standard. Edgar Chen; Timothy Gu. WHATWG. Living Standard.

URL: https://webidl.spec.whatwg.org/

[CSP3]
Content Security Policy Level 3. Mike West; Antonio Sartori. W3C. 18 June

2024. W3C Working Draft. URL: https://www.w3.org/TR/CSP3/

[WEBUSB]
WebUSB API. WICG. cg-draft. URL: https://wicg.github.io/webusb/

↑

