
emWin 8051
Graphic Library with

Graphical User Interface
for 8051 processors

Version 4.00

Manual Rev. 0

www.segger.com

solutions for embedded software

2 CHAPTER
Disclaimer
Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER SYSTEME GmbH (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice
You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2008 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks
Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Registration
Please register the software via email. This way we can make sure you will receive
updates or notifications of updates as soon as they become available.
For registration, please provide the following:

� Company name and address
� Your name
� Your job title
� Your email address and telephone number
� Name and version of the product

Please send this information to: register@segger.com

Contact address
SEGGER Microcontroller GmbH & Co. KG
In den Weiden 11
D-40721 Hilden
Germany
Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com

Manual versions
This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.
For further information on topics or routines not yet specified, please contact us.
Print date: 6/22/09

Manual
version

Date By Explanation

4.00R0 090618 AS Initial version
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

3

SEGGER Microcontroller Systeme GmbH develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

4 CHAPTER
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

5

Table of Contents
1 Introduction to emWin 8051 ...11

1.1 Purpose of this document ...12
1.2 Assumptions ...12
1.3 Differences between emWin and emWin 8051 ...12
1.4 Requirements..12
1.4.1 Target system (hardware) ..12
1.4.2 Development environment (compiler)...12
1.5 Features of emWin 8051...13
1.6 Samples and demos...14
1.7 How to use this manual ..14
1.8 Typographic conventions for syntax ...14
1.9 Screen and coordinates ..14
1.10 How to connect the LCD to the microcontroller ..15
1.11 Data types..16

2 Getting Started...17

2.1 Recommended directory structure..18
2.1.1 Subdirectories...18
2.1.2 Include directories ...18
2.2 Adding emWin to the target program ...18
2.3 Creating a library...19
2.3.1 Adapting the library batch files to a different system19
2.4 "C" files to include in the project..21
2.5 Configuring emWin ..21
2.6 Initializing emWin..22
2.7 Using emWin with target hardware ..22
2.8 The "Hello world" sample program ...23

3 Simulator..25

3.1 Using the simulator..26
3.1.1 Using the simulator in the trial emWin version ...26
3.1.1.1 Directory structure...26
3.1.1.2 Visual C++ workspace..26
3.1.1.3 Compiling the demo program ..26
3.1.1.4 Compiling the samples ...27
3.1.2 Using the simulator with the emWin source ...28
3.1.2.1 Directory structure...28
3.1.2.2 Visual C++ workspace..28
3.1.2.3 Compiling the application..28
3.2 Device simulation ..30
3.2.1 Device simulator API ..30
3.2.2 Hardkey simulation ..33
3.2.2.1 Hardkey simulator API..34
3.3 Integrating the emWin simulation into an existing simulation.........................37
3.3.1 Directory structure...37
3.3.2 Using the simulation library...37
3.3.2.1 Modifying WinMain...37
3.3.2.2 Sample application ..37
3.3.3 Integration into the embOS Simulation ...39
3.3.3.1 WinMain ...39
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

6

3.3.3.2 Target program (main) .. 39
3.3.4 GUI simulation API .. 41

4 Viewer ..45

4.1 Using the viewer ... 46
4.1.1 Using the simulator and the viewer.. 46
4.1.2 Using the viewer with virtual pages ... 47
4.1.3 Always on top... 47
4.1.4 Open further windows of the display output .. 47
4.1.5 Zooming .. 47
4.1.6 Copy the output to the clipboard ... 48
4.1.7 Using the viewer with multiple displays .. 48
4.1.8 Using the viewer with multiple layers ... 49

5 Displaying Text ..51

5.1 Basic routines ... 52
5.2 Text API... 52
5.3 Routines to display text.. 53
5.4 Selecting text drawing modes ... 58
5.5 Selecting text alignment... 60
5.6 Setting the current text position.. 61
5.7 Retrieving the current text position.. 62
5.8 Routines to clear a window or parts of it... 62

6 Displaying Values ..65

6.1 Value API ... 66
6.2 Displaying decimal values... 66
6.3 Displaying floating-point values... 70
6.4 Displaying binary values... 72
6.5 Displaying hexadecimal values .. 73
6.6 Version of emWin.. 74

7 2-D Graphic Library..75

7.1 Graphic API .. 76
7.2 Drawing modes... 77
7.3 Query current client rectangle... 78
7.4 Pen size ... 79
7.5 Basic drawing routines ... 79
7.6 Drawing bitmaps... 83
7.7 Drawing lines.. 85
7.8 Drawing polygons.. 89
7.9 Drawing circles ... 93
7.10 Drawing ellipses.. 94
7.11 Drawing arcs .. 95
7.12 Drawing graphs .. 96
7.13 Drawing pie charts .. 97
7.14 Saving and restoring the GUI-context .. 98
7.15 Clipping ... 98

8 Fonts ..101

8.1 Introduction ..102
8.2 Font types...102
8.3 Font formats..102
8.3.1 �C� file format...102
8.4 Declaring custom fonts ...102
8.5 Selection of a font ..103
8.6 Font API..103
8.7 �C� file related font functions ..103
8.8 Common font-related functions ..104
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

7

8.9 Character sets... 107
8.9.1 ASCII... 107
8.9.2 ISO 8859-1 Western Latin character set ... 107
8.9.3 Unicode.. 109
8.10 Font converter .. 109
8.10.1 Adding fonts ... 110
8.11 Standard fonts .. 110
8.11.1 Font identifier naming convention .. 110
8.11.2 Font file naming convention .. 111
8.11.3 Measurement, ROM-size and character set of fonts 112
8.11.4 Proportional fonts .. 113
8.11.4.1 Overview.. 113
8.11.4.2 Measurement, ROM size and used files ... 114
8.11.4.3 Characters.. 115
8.11.5 Monospaced fonts.. 123
8.11.5.1 Overview.. 123
8.11.5.2 Measurement, ROM size and used files ... 123
8.11.5.3 Characters.. 124
8.11.6 Digit fonts (proportional) .. 128
8.11.6.1 Overview.. 128
8.11.6.2 Measurement, ROM size and used files ... 128
8.11.6.3 Characters.. 128
8.11.7 Digit fonts (monospaced).. 130
8.11.7.1 Overview.. 130
8.11.7.2 Measurement, ROM size and used files ... 130
8.11.7.3 Characters.. 130

9 Bitmap Converter ...133

9.1 What it does ... 134
9.2 Loading a bitmap... 134
9.2.1 Supported file formats.. 134
9.2.2 Loading from a file... 134
9.2.3 Using the clipboard .. 134
9.3 Generating "C" files from bitmaps .. 135
9.3.1 Supported bitmap formats .. 135
9.3.2 Palette information .. 135
9.3.3 Transparency .. 136
9.3.4 Alpha blending .. 136
9.3.5 Selecting the best format.. 137
9.3.6 Saving the file... 138
9.4 Color conversion.. 139
9.5 Compressed bitmaps.. 140
9.6 Using a custom palette ... 140
9.6.1 Saving a palette file ... 141
9.6.2 Palette file format .. 141
9.6.3 Palette files for fixed palette modes.. 141
9.6.4 Converting a bitmap .. 141
9.7 Command line usage.. 142
9.7.1 Format for commands .. 142
9.7.2 Valid command line options... 142
9.8 Example of a converted bitmap ... 144

10 Colors...147

10.1 Predefined colors ... 148
10.2 The color bar test routine ... 148
10.3 Fixed palette modes... 149
10.4 Default fixed palette modes .. 150
10.5 Detailed fixed palette mode description .. 151
10.6 Custom palette modes.. 160
10.7 Modifying the color lookup table at run time .. 160
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

8

10.8 Color API ..160
10.9 Basic color functions ...161
10.10 Index & color conversion ...163
10.11 Lookup table (LUT) group..164

11 Execution Model: Single Task / Multitask ..167

11.1 Supported execution models..168
11.2 Single task system (superloop) ..168
11.2.1 Description..168
11.2.2 Superloop example (without emWin) ..168
11.2.3 Advantages ...168
11.2.4 Disadvantages ...168
11.2.5 Using emWin ...168
11.2.6 Superloop example (with emWin)...169
11.3 Multitask system: one task calling emWin..169
11.3.1 Description..169
11.3.2 Advantages ...169
11.3.3 Disadvantages ...169
11.3.4 Using emWin ...169
11.4 Multitask system: multiple tasks calling emWin ..170
11.4.1 Description..170
11.4.2 Advantages ...170
11.4.3 Disadvantages ...170
11.4.4 Using emWin ...170
11.4.5 Recommendations..170
11.4.6 Example ...170
11.5 GUI configuration macros for multitasking support......................................171
11.6 Kernel interface routine API ...172

12 Virtual screen / Virtual pages ...177

12.1 Introduction ..178
12.2 Requirements ..178
12.3 Configuration...179
12.3.1 Sample configuration..179
12.4 Samples ...180
12.4.1 Basic sample ...180
12.5 Virtual screen API...181

13 Keyboard Input...185

13.1 Description..186
13.1.1 Driver layer API ...186
13.1.2 Application layer API...187

14 Foreign Language Support ..189

14.1 Unicode ..190
14.1.1 UTF-8 encoding..190
14.1.2 Unicode characters ...190
14.1.3 UTF-8 strings...191
14.1.3.1 Using U2C.exe to convert UTF-8 text into "C"-code191
14.1.4 Unicode API...192
14.1.4.1 UTF-8 functions ...192
14.1.4.2 Double byte functions ...194

15 Display drivers ...199

15.1 Available drivers and supported display controllers200
15.2 CPU / Display controller interface ...202
15.2.1 Full bus interface..202
15.2.2 Simple bus interface ...203
15.2.3 4 pin SPI interface..204
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

9

15.2.4 3 pin SPI interface ... 204
15.2.5 I2C bus interface ... 205
15.2.6 Non readable displays .. 205
15.3 Detailed display driver descriptions .. 205
15.3.1 LCDLin driver .. 205
15.3.1.1 LCDLin driver (32/16/8 bit access)... 206
15.3.1.2 LCDLin driver (32 bit access)... 207
15.3.1.3 LCDLin driver (8 and 16 bit access).. 212
15.3.2 LCD667XX driver ... 216
15.3.3 LCDTemplate driver ... 217
15.3.4 LCDNull driver... 218
15.4 LCD layer and display driver API .. 218
15.4.1 Display driver API .. 218
15.4.2 Driver routines .. 220
15.4.2.1 Init & display control group ... 220
15.4.2.2 Drawing group .. 220
15.4.2.3 "Get" group .. 222
15.4.2.4 Lookup table (LUT) group ... 223
15.4.2.5 Miscellaneous group... 223
15.4.3 Callback routines ... 224
15.4.4 LCD layer routines ... 224
15.4.4.1 "Get" group .. 224

16 Timing and Execution-Related Functions ..229

16.1 Timing and execution API ... 230

17 Low-Level Configuration (LCDConf.h) ...231

17.1 Available configuration macros .. 232
17.2 General (required) configuration.. 234
17.3 Initialisation of the controller... 235
17.4 Display orientation... 236
17.5 Color configuration .. 238
17.6 Simple bus interface configuration ... 239
17.6.1 Macros used by a simple bus interface.. 239
17.6.2 Example of memory mapped interface.. 240
17.6.3 Sample routines for connection to I/O pins.. 241
17.7 3 pin SPI configuration ... 242
17.7.1 Macros used by a 3 pin SPI interface .. 242
17.7.2 Sample routines for connection to I/O pins.. 242
17.8 4 pin SPI configuration ... 243
17.8.1 Macros used by a 4 pin SPI interface .. 243
17.8.2 Sample routines for connection to I/O pins.. 243
17.9 I2C bus interface configuration .. 245
17.9.1 Macros used by a I2C bus interface .. 245
17.9.2 Sample routines for connection to I/O pins.. 246
17.10 Full bus interface configuration .. 247
17.10.1 Macros used by a full bus interface .. 247
17.10.2 Configuration example ... 249
17.11 Virtual display support.. 251
17.12 LCD controller configuration: COM/SEG lines ... 252
17.13 Configuring multiple display controllers... 253
17.13.1 Macros used by the distribution layer ... 253
17.13.2 Hardware access ... 253
17.13.3 COM/SEG line configuration .. 253
17.13.4 Configuration example ... 254
17.14 COM/SEG lookup tables .. 255
17.15 Miscellaneous.. 256

18 High-Level Configuration (GUIConf.h) ...259

18.1 General notes ... 260
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

10
18.2 How to configure the GUI ..260
18.2.1 Sample configuration..260
18.3 Available GUI configuration macros...260
18.3.1 GUI_MEMCPY...261
18.3.2 GUI_MEMSET...261
18.3.3 GUI_TRIAL_VERSION ...261
18.4 Runtime configuration...262
18.4.1 Memory requirements...262
18.4.2 Available GUI configuration routines ...263
18.5 Runtime configuration...264
18.6 GUI_X routine reference..264
18.6.1 Init routines ..265
18.6.2 Timing routines..265
18.6.3 Kernel interface routines ...266
18.7 Debugging ..266
18.8 Dynamic memory...267
18.9 Special considerations for certain Compilers/CPUs269
18.9.1 AVR with IAR-Compiler ...269
18.9.2 8051 Keil compiler and other 8-bit CPU compilers269

19 Performance and Resource Usage..271

19.1 Memory requirements...272
19.1.1 Memory requirements of the GUI components..272
19.1.2 Stack requirements ..272

20 Support ..273

20.1 Problems with tool chain (compiler, linker) ..274
20.1.1 Compiler crash...274
20.1.2 Compiler warnings..274
20.1.3 Linker problems ...274
20.2 Problems with hardware/driver ..275
20.3 Problems with API functions...275
20.4 Problems with the performance..275
20.5 Contacting support ...276
20.6 FAQ�s ...276
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

11
Chapter 1

Introduction to emWin 8051
The following chapter introduces emWin 8051 and gives basic information about its
purpose and usage.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Introduction to emWin 8051
1.1 Purpose of this document
This guide describes how to install, configure and use the emWin graphical user
interface for embedded applications. It also explains the internal structure of the
software.

1.2 Assumptions
This guide assumes that you already possess a solid knowledge of the "C" program-
ming language. If you feel that your knowledge of "C" is not sufficient, we recom-
mend The "C" Programming Language by Kernighan and Richie, which describes the
programming standard and, in newer editions, also covers the ANSI "C" standard.
Knowledge of assembly programming is not required.

1.3 Differences between emWin and emWin 8051
emWin 8051 is designed to develop software for 8051 based CPUs with the Keil 8051
compiler. This version does not include features like the window manager, the widget
library and memorry devices which are supported by emWin (full version).
If you would like to develop your software for other target systems using emWin,
don�t hesitate to contact us or visit our website www.segger.com, where you can find
the latest emWin documentation and sample applications.

1.4 Requirements
A target system is not required in order to develop software with emWin; most of the
software can be developed using the simulator. However, the final purpose is usually
to be able to run the software on a target system.

1.4.1 Target system (hardware)
Your target system must:

� Have a 8051 CPU
� Have a minimum of RAM and ROM
� Have a full graphic LCD (any type and any resolution)

The memory requirements vary depending on which parts of the software are used
and how efficient your target compiler is. It is therefore not possible to specify pre-
cise values, but the following apply to typical systems.

Small systems (no window manager)
� RAM: 100 bytes
� Stack: 600 bytes
� ROM: 10-25 kb (depending on the functionality used)

Note that ROM requirements will increase if your application uses many fonts. All val-
ues are rough estimates and cannot be guaranteed.

1.4.2 Development environment (compiler)
emWin 8051 is designed to develop software only for 8051 based CPUs with the Keil
8051 compiler.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

13
1.5 Features of emWin 8051
emWin is designed to provide an efficient, processor- and LCD controller-independent
graphical user interface for any application that operates with a graphical LCD. It is
compatible with single-task and multitask environments, with a proprietary operating
system or with any commercial RTOS. emWin is shipped as "C" source or library
code. It may be adapted to any size physical and virtual display with any LCD con-
troller and CPU. Its features include the following:

General
� Any (monochrome, grayscale or color) LCD with any controller supported (if the

right driver is available).
� May work without LCD controller on smaller displays.
� Any interface supported using configuration macros.
� Display-size configurable.
� Characters and bitmaps may be written at any point on the LCD, not just on

even-numbered byte addresses.
� Routines are optimized for both size and speed.
� Compile time switches allow for different optimizations.
� For slower LCD controllers, LCD can be cached in memory, reducing access to a

minimum and resulting in very high speed.
� Clear structure.
� Virtual display support; the virtual display can be larger than the actual display.

Graphic library
� Bitmaps of different color depths supported.
� Bitmap converter available.
� Absolutely no floating-point usage.
� Fast line/point drawing (without floating-point usage).
� Very fast drawing of circles/polygons.
� Different drawing modes.

Fonts
� A variety of different fonts are shipped with the basic software: 4*6, 6*8, 6*9,

8*8, 8*9, 8*16, 8*17, 8*18, 24*32, and proportional fonts with pixel-heights of
8, 10, 13, 16.

� New fonts can be defined and simply linked in.
� Only the fonts used by the application are actually linked to the resulting execut-

able, resulting in minimum ROM usage.
� Fonts are fully scalable, separately in X and Y.
� Font converter available; any font available on your host system (i.e. Microsoft

Windows) can be converted.

String/value output routines
� Routines to show values in decimal, binary, hexadecimal, any font.
� Routines to edit values in decimal, binary, hexadecimal, any font.

Touch-screen & mouse support
� For window objects such as the button widget, emWin offers touch-screen and

mouse support.

PC tools
� Simulation plus viewer.
� Bitmap converter.
� Font converter.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Introduction to emWin 8051
1.6 Samples and demos
To give you a better idea of what emWin can do, we have different demos available
as "ready-to-use" simulation executables under Sample\EXE. The source of the sam-
ple programs is located in the folder Sample. The folder Sample\GUIDemo contains an
application program showing most of emWin�s features. All samples are also available
at www.segger.com.

1.7 How to use this manual
This manual explains how to install, configure and use emWin. It describes the inter-
nal structure of the software and all the functions that emWin offers (the Application
Program Interface, or API). Before actually using emWin, you should read or at least
glance through this manual in order to become familiar with the software. The follow-
ing steps are then recommended:

� Copy the emWin files to your computer.
� Go through Chapter 2: "Getting Started".
� Use the simulator in order to become more familiar with what the software can

do (refer to Chapter 3: "Simulator).
� Expand your program using the rest of the manual for reference.

1.8 Typographic conventions for syntax
This manual uses the following typographic conventions:

1.9 Screen and coordinates
The screen consists of many dots that can
be controlled individually. These dots are
called pixels. Most of the text and drawing
functions that emWin offers in its API to the
user program can write or draw on any
specified pixel.
The horizontal scale is called the X-axis,
whereas the vertical scale is called the Y-
axis. Coordinates are denoted as a pair
consisting of an X- and a Y-value (X, Y).
The X-coordinate is always first in routines
that require X and Y coordinates. The upper
left corner of the display (or a window) has
per default the coordinates (0,0). Positive

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the display (i.e. sys-
tem functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

New Sample Sample code that has been added to an existing program example.

Warning Important cautions or reminders.

X

Y

(0,0)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

15
X-values are always to the right; positive Y-values are always down. The above graph
illustrates the coordinate system and directions of the X- and Y- axes. All coordinates
passed to an API function are always specified in pixels.

1.10 How to connect the LCD to the microcontroller
emWin handles all access to the LCD. Virtually any LCD controller can be supported,
independently of how it is accessed. For details, please refer to Chapter 17: "Low-
Level Configuration". Also, please get in contact with us if your LCD controller is not
supported. We are currently writing drivers for all LCD controllers available on the
market and may already have a proven driver for the LCD controller that you intend
to use. It is usually very simple to write the routines (or macros) used to access the
LCD in your application. SEGGER Microcontroller Systeme GmbH offers the service of
making these customizations for you, if necessary with your target hardware.
It does not really matter how the LCD is connected to the system as long as it is
somehow accessible by software, which may be accomplished in a variety of ways.
Most of these interfaces are supported by a driver which is supplied in source code
form. This driver does not normally require modifications, but is configured for your
hardware by making changes in the file LCDConf.h. Details about how to customize a
driver to your hardware as necessary are explained in Chapter 15: "LCD Drivers".
The most common ways to access the LCD are described as follows. If you simply
want to understand how to use emWin, you may skip this section.

LCD with memory-mapped LCD controller:
The LCD controller is connected directly to the data bus of the system, which means
the controller can be accessed just like a RAM. This is a very efficient way of access-
ing the LCD controller and is most recommended. The LCD addresses are defined to
the segment LCDSEG, and in order to be able to access the LCD the linker/locator
simply needs to be told where to locate this segment. The location must be identical
to the access address in physical address space. Drivers are available for this type of
interface and for different LCD controllers.

LCD with LCD controller connected to port / buffer
For slower LCD controllers used on fast processors, the use of port-lines may be the
only solution. This method of accessing the LCD has the disadvantage of being some-
what slower than direct bus-interface but, particularly with a cache that minimizes
the accesses to the LCD, the LCD update is not slowed down significantly. All that
needs to be done is to define routines or macros which set or read the hardware
ports/buffers that the LCD is connected to. This type of interface is also supported by
different drivers for the different LCD controllers.

Proprietary solutions: LCD without LCD controller
The LCD can also be connected without an LCD controller. In this case, the LCD data
is usually supplied directly by the controller via a 4- or 8-bit shift register. These pro-
prietary hardware solutions have the advantage of being inexpensive, but the disad-
vantage of using up much of the available computation time. Depending on the CPU,
this can be anything between 20 and almost 100 percent; with slower CPUs, it is
really not possible at all. This type of interface does not require a specific LCD driver
because emWin simply places all the display data into the LCD cache. You yourself
must write the hardware-dependent portion that periodically transfers the data in the
cache memory to your LCD.
Sample code for transferring the video image into the display is available in both "C"
and optimized assembler for M16C and M16C/80.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Introduction to emWin 8051
1.11 Data types
Since "C" does not provide data types of fixed lengths which are identical on all plat-
forms, emWin uses, in most cases, its own data types as shown in the table below:

For most 16/32-bit controllers, the settings will work fine. However, if you have simi-
lar defines in other sections of your program, you might want to change or relocate
them. A recommended place is in the file Global.h.

Data type Definition Explanation

I8 signed char 8-bit signed value

U8 unsigned char 8-bit unsigned value

I16 signed short 16-bit signed value

U16 unsigned short 16-bit unsigned value

I32 signed long 32-bit signed value

U32 unsigned long 32-bit unsigned value

I16P signed short 16-bit (or more) signed value

U16P unsigned short 16-bit (or more) unsigned value
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

17
Chapter 2

Getting Started
The following chapter provides an overview of the basic procedures for setting up and
configuring emWin on your target system. It also includes a simple program exam-
ple.
If you find yourself unsure about certain areas, keep in mind that most topics are
treated in greater detail in later chapters. You will most likely need to refer to other
parts of the manual before you begin more complicated programming.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Getting Started
2.1 Recommended directory structure
We recommend keeping emWin separate from your application
files. It is good practice to keep all the program files (including
the header files) together in the GUI subdirectories of your
project�s root directory. The directory structure should be simi-
lar to the one pictured on the right. This practice has the advan-
tage of being very easy to update to newer versions of emWin
by simply replacing the GUI\ directories. Your application files
can be stored anywhere.

2.1.1 Subdirectories
The following table shows the contents of all GUI subdirectories:

(* = optional)

2.1.2 Include directories
You should make sure that the include path contains the following directories (the
order of inclusion is of no importance):

� Config
� GUI\Core

Warning: Always make sure that you have only one version of each file!
It is frequently a major problem when updating to a new version of emWin if you
have old files included and therefore mix different versions. If you keep emWin in the
directories as suggested (and only in these), this type of problem cannot occur. When
updating to a newer version, you should be able to keep your configuration files and
leave them unchanged. For safety reasons, we recommend backing (or at least
renaming) the GUI\ directories prior to updating.

2.2 Adding emWin to the target program
You basically have a choice between including only the source files that you are actu-
ally going to use in your project, which will then be compiled and linked, or creating
a library and linking the library file. If your tool chain supports "smart" linking (link-
ing in only the modules that are referenced and not those that are not referenced),
there is no real need to create a library at all, since only the functions and data struc-
tures which are required will be linked. If your tool chain does not support "smart"
linking, a library makes sense, because otherwise everything will be linked in and the
program size will be excessively large. For some CPUs, we have sample projects
available to help you get started.

Directory Contents

Config Configuration files

GUI\ConvertMono Color conversion routines used for grayscale displays *

GUI\ConvertColor Color conversion routines used for color displays *

GUI\Core emWin core files

GUI\Font Font files

GUI\LCDDriver LCD driver
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

19
2.3 Creating a library
Building a library from the sources is a simple procedure. The
first step is to copy the batch files (located under Sam-
ple\Makelib) into your root directory. Then, make any neces-
sary changes. There are a total of four batch files which need to
be copied, described in the table below. The main file,
Makelib.bat, will be the same for all systems and requires no
changes. To build a library for your target system, you will nor-
mally need to make slight modifications to the other three
smaller files. Finally, start the file Makelib.bat to create the
library. The batch files assume that your GUI and Config subdi-
rectories are set up as recommended.
The procedure for creating a library is illustrated in the flow
chart to the right. The Makelib.bat file first calls Prep.bat to
prepare the environment for the tool chain. Then it calls CC.bat
for every file to be included in the library. It does this as many
times as necessary. CC.bat adds each object file to a list that
will be used by lib.bat. When all files to be added to the
library have been listed, Makelib.bat then calls lib.bat,
which uses a librarian to put the listed object files into the
actual library. Of course you are free to create libraries an other
way.

The files as shipped assume that a Microsoft compiler is installed in its default loca-
tion. If all batch files are copied to the root directory (directly above GUI) and no
changes are made at all, a simulation library will be generated for the emWin simula-
tion. In order to create a target library, however, it will be necessary to modify
Prep.bat, CC.bat, and lib.bat.

2.3.1 Adapting the library batch files to a different system
The following will show how to adapt the files by a sample adaptation for a Mitsubishi
M32C CPU.

Adapting Prep.bat
Prep.bat is called at the beginning of Makelib.bat. As described above its job is to
set the environment variables for the used tools and the environment variable PATH,
so that the batch files can call the tools without specifying an absolute path. Assum-
ing the compiler is installed in the folder C:\MTOOL the file Prep.bat could look as fol-
lows:
@ECHO OFF
SET TOOLPATH=C:\MTOOL

REM **
REM Set the variable PATH to be able to call the tools

SET PATH=%TOOLPATH%\BIN;%TOOLPATH%\LIB308;%PATH%

REM **
REM Set the tool internal used variables

SET BIN308=%TOOLPATH%\BIN
SET INC308=%TOOLPATH%\INC308

File Explanation

Makelib.bat Main batch file. No modification required.

Prep.bat Called by Makelib.bat to prepare environment for the tool chain to be used,

CC.bat
Called by Makelib.bat for every file to be added to the library; creates a list of these
object files which will then be used in the next step by the librarian in the lib.bat
file.

lib.bat Called by Makelib.bat to put the object files listed by CC.bat into a library.

Makelib.bat

Prep.bat

CC.bat

lib.bat

All files
in library?

Yes

No
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Getting Started
SET LIB308=%TOOLPATH%\LIB308
SET TMP308=%TOOLPATH%\TMP

Adapting CC.bat
The job of CC.bat is to compile the passed source file and adding the file name of the
object file to a link list. When starting MakeLib.bat it creates the following subdirec-
tories relative to its position:

The object file should be created (or moved) to Temp\Output. This makes sure all the
output will be deleted after the build process. Also the link list should be located in
the output folder. The following shows a sample for the Mitsubishi compiler:

@ECHO OFF
GOTO START
REM **
REM Explanation of the used compiler options:

-silent : Suppresses the copyright message display at startup
-M82 : Generates object code for M32C/80 Series (Remove this switch
 for M16C80 targets)
-c : Creates a relocatable file (extension .r30) and ends processing
-I : Specifies the directory containing the file(s) specified in #include
-dir : Specifies the destination directory
-OS : Maximum optimization of speed followed by ROM size
-fFRAM : Changes the default attribute of RAM data to far
-fETI : Performs operation after extending char-type data to the int type
 (Extended according to ANSI standards)
:START

REM **
REM Compile the passed source file with the Mitsubishi NC308 compiler

NC308 -silent -M82 -c -IInc -dir Temp\Output -OS -fFRAM -fETI Temp\Source\%1.c

REM **
REM Pause if any problem occurs

IF ERRORLEVEL 1 PAUSE

REM **
REM Add the file name of the object file to the link list

ECHO Temp\Output\%1.R30>>Temp\Output\Lib.dat

Adapting Lib.bat
After all source files have been compiled Lib.bat will be called from MakeLib.bat.
The job is to create a library file using the link list created by CC.bat. The destination
folder of the library file should be the Lib folder created by MakeLib.bat. The follow-
ing shows a sample for the Mitsubishi librarian:

@ECHO OFF
GOTO START
REM **
REM Explanation of the used options:

-C : Creates new library file
@ : Specifies command file
:START

REM **
REM Create the first part of the linker command file

ECHO -C Lib\GUI>Temp\Output\PARA.DAT

Directory Contents

Lib This folder should contain the library file after the build process.

Temp\Output
Should contain all the compiler output and the link list file. Will be deleted after
the build process.

Temp\Source MakeLib.bat uses this folder to copy all source and header files used for the
build process. Will be deleted after the build process.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

21
REM **
REM Merge the first part with the link list to the linker command file

COPY Temp\Output\PARA.DAT+Temp\Output\Lib.dat Temp\Output\LINK.DAT

REM **
REM Call the Mitsubishi librarian

LB308 @Temp\Output\LINK.DAT

REM **
REM Pause if any problem occurs

IF ERRORLEVEL 1 PAUSE

2.4 "C" files to include in the project
Generally speaking, you need to include the core "C" files of emWin, the LCD driver,
all font files you plan to use and any optional modules you have ordered with emWin:

� All "C" files of the folder GUI\Core
� The fonts you plan to use (located in GUI\Font)
� LCD driver: All "C" files of the folder GUI\LCDDriver and Config\LCDConf.c.
� All "C" files of the folder GUI\JPEG (only if you need JPEG support)

Additional software packages
If you plan to use additional, optional modules you must also include their "C" files:

� Gray scale converting functions: all "C" files located in GUI\ConvertMono
� Color conversion functions: all "C" files located in GUI\ConvertColor

Target specifics
� GUI_X.c. A sample file is available as Sample\GUI_X. This file contains the hard-

ware-dependent part of emWin and should be modified as described in Chapter
18: "High-Level Configuration".

� For port/buffer-accessed LCDs, interface routines must be defined. Samples of
the required routines are available under Samples\LCD_X or on our website in the
download area.

Be sure that you include GUI.h in all of your source files that access emWin.

2.5 Configuring emWin
The Config folder should contain the configuration files matching your order. The file
LCDConf.h contains all the definitions necessary to adapt emWin to your LCD. The
file LCDConf.c contains the initialization routine of the display controller, which is the
main task when configuring emWin. For details, please see Chapter 17: "Low-Level
Configuration".
If emWin is not configured correctly, because you did not select the right display res-
olution or chose the wrong LCD controller, it will probably not display anything at all
or display something that does not resemble what you expected. So take care to tai-
lor LCDConf.h and LCDConf.c to your needs.
The following types of configuration macros exist:

Binary switches "B"
Switches can have a value of either 0 or 1, where 0 means deactivated and 1 means
activated (actually anything other than 0 would work, but using 1 makes it easier to
read a config file). These switches can enable or disable a certain functionality or
behavior. Switches are the simplest form of configuration macro.

Numerical values "N"
Numerical values are used somewhere in the code in place of a numerical constant.
Typical examples are in the configuration of the resolution of an LCD.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 2 Getting Started
Selection switches "S"
Selection switches are used to select one out of multiple options where only one of
those options can be selected. A typical example might be the selection of the type of
LCD controller used, where the number selected denotes which source code (in which
LCD driver) is used to generate object code.

Alias "A"
A macro which operates like a simple text substitute. An example would be the define
U8, in which the preprocessor would replace with unsigned char.

Function replacements "F"
Macros can basically be treated like regular functions although certain limitations
apply, as a macro is still put into the code as simple text replacement. Function
replacements are mainly used to add specific functionality to a module (such as the
access to an LCD) which is highly hardware-dependent. This type of macro is always
declared using brackets (and optional parameters).

2.6 Initializing emWin
The routine GUI_Init() initializes the LCD and the internal data structures of
emWin, and must be called before any other emWin function. This is done by placing
the following line into the init sequence of your program:

 GUI_Init();

If this call is left out, the entire graphics system will not be initialized and will there-
fore not be ready. For more details about the initialization process please refer to
Chapter 18: "High-Level Configuration".

2.7 Using emWin with target hardware
The following is just a basic outline of the general steps that should be taken when
starting to program with emWin. All steps are explained further in subsequent chap-
ters.

Step 1: Customizing emWin
The first step is usually to customize emWin by modifying the header file LCDConf.h
and the display controller initialization in LCDConf.c.

Step 2: Defining access addresses or access routines
For memory-mapped LCDs, the access addresses of the LCD simply need to be
defined in LCDConf.h. For port/buffer-accessed LCDs, interface routines must be
defined. Samples of the required routines are available under Samples\LCD_X or on
our website in the download area.

Step 3: Compiling, linking and testing the sample code
emWin comes with sample code for both single- and multitask environments. Com-
pile, link and test these little sample programs until you feel comfortable doing so.

Step 4: Modifying the sample program
Make simple modifications to the sample programs. Add additional commands such
as displaying text in different sizes on the display, showing lines and so on.

Step 5: In multitask applications: adapt to your OS (if necessary)
If multiple tasks should be able to access the display simultaneously, the macros
GUI_MAXTASK and GUI_OS come into play, as well as the file GUITask.c. For details
and sample adaptations, please refer to Chapter 18: "High-Level Configuration".
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

23
Step 6: Write your own application using emWin
By now you should have a clearer understanding of how to use emWin. Think about
how to structure the program your application requires and use emWin by calling the
appropriate routines. Consult the reference chapters later in this manual, as they dis-
cuss the specific emWin functions and configuration macros that are available.

2.8 The "Hello world" sample program
A "Hello world" program has been used as a starting point for "C" programming since
the early days, because it is essentially the smallest program that can be written. A
"Hello world" program with emWin, called HELLO.c, is shown below and is available
as BASIC_HelloWorld.c in the sample shipped with emWin.
The whole purpose of the program is to write "Hello world" in the upper left corner of
the display. In order to be able to do this, the hardware of the application, the LCD
and the GUI must first be initialized. emWin is initialized by a call to GUI_Init() at
the start of the program, as described previously. In this example, we assume that
the hardware of your application is already initialized.
The �Hello world� program looks as follows:

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* *
* emWin sample code *
* *
**

--
File : BASIC_HelloWorld.c
Purpose : Simple demo drawing "Hello world"
--
*/

#include "GUI.H"

/***
*
* main
*
**
*/

void MainTask(void) {
/*
 ToDo: Make sure hardware is initialized first!!
*/
 GUI_Init();
 GUI_DispString("Hello world!");
 while(1);
}

Adding functionality to the "Hello world" program
Our little program has not been doing too much so far. We can now extend the func-
tionality a bit: after displaying "Hello world", we would like the program to start
counting on the display in order to be able to estimate how fast outputs to the LCD
can be made. We can simply add a bit of code to the loop at the end of the main pro-
gram, which is essentially a call to the function that displays a value in decimal form.
The example is available as BASIC_Hello1.c in the sample folder.

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* *
* emWin sample code *
* *
**

--
File : BASIC_Hello1.c
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 2 Getting Started
Purpose : Simple demo drawing "Hello world"
--
*/

#include "GUI.H"

/***
*
* main
*
**
*/

void MainTask(void) {
 int i=0;
/*
 ToDo: Make sure hardware is initialized first!!
*/
 GUI_Init();
 GUI_DispString("Hello world!");
 while(1) {
 GUI_DispDecAt(i++, 20,20,4);
 if (i>9999) i=0;
 }
}

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 3

Simulator
The PC simulation of emWin allows you to compile the same "C" source on your Win-
dows PC using a native (typically Microsoft) compiler and create an executable for
your own application. Doing so allows the following:

� Design of the user interface on your PC (no need for hardware!).
� Debugging of your user interface program.
� Creation of demos of your application, which can be used to discuss the user

interface.

The resulting executable can be easily sent via email.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 3 Simulator
3.1 Using the simulator
The emWin simulator uses Microsoft Visual C++ (version 6.00 or higher) and the
integrated development environment (IDE) which comes with it. You will see a simu-
lation of your LCD on your PC screen, which will have the same resolution in X and Y
and can display the exact same colors as your LCD once it has been properly config-
ured. The entire graphic library API and window manager API of the simulation are
identical to those on your target system; all functions will behave in the very same
way as on the target hardware since the simulation uses the same "C" source code as
the target system. The difference lies only in the lower level of the software: the LCD
driver. Instead of using the actual LCD driver, the PC simulation uses a simulation
driver which writes into a bitmap. The bitmap is then displayed on your screen using
a second thread of the simulation. This second thread is invisible to the application;
it behaves just as if the LCD routines were writing directly to the display.

3.1.1 Using the simulator in the trial emWin version
The trial version of emWin contains a full library which allows you to evaluate all
available features of emWin. It also includes the emWin viewer (used for debugging
applications), as well as demo versions of the font converter and the bitmap con-
verter. Keep in mind that, being a trial version, you will not be able to change any
configuration settings or view the source code, but you will still be able to become
familiar with what emWin can do.

3.1.1.1 Directory structure
The directory structure of the simulator in the trial version will
appear as pictured to the right. The table below explains the con-
tents of the folders:

3.1.1.2 Visual C++ workspace
The root directory shown above includes the
Microsoft Visual C++ workspace (Simula-
tionTrial.dsw) and project file (Simula-
tionTrial.dsp). Double-click the
workspace file to open the Microsoft IDE.
The directory structure of the Visual C++
workspace will look like the one shown to
the right.

3.1.1.3 Compiling the demo program
The source files for the demo program are located in the Application directory as a
ready-to-go simulation, meaning that you need only to rebuild and start it. Please
note that to rebuild the executable, you will need to have Microsoft Visual C++ (ver-
sion 6.00 or later) installed.

Directory Contents

Application Source of the demo program.

Config
configuration files used to build the library. Do not make
any changes to these files!

Exe Ready-to-use demo program.

GUI Library files and include files needed to use the library.

Sample Simulation samples and their sources.

Simulation Files needed for the simulation.

Tool
The emWin viewer, a demo version of the bitmap con-
verter and a demo version of the font converter.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

27
� Step 1: Open the Visual C++ workspace by double-clicking on Simulation-
Trial.dsw.

� Step 2: Rebuild the project by choosing Build/Rebuild All from the menu (or
by pressing F7).

� Step 3: Start the simulation by choosing Build/Start Debug/Go from the menu
(or by pressing F5).

The demo project will begin to run and may be exited at any time by right-clicking on
it and selecting Exit.

3.1.1.4 Compiling the samples
The Sample directory contains ready-to-go samples that demonstrate different fea-
tures of emWin and provide examples of some of their typical uses. In order to build
any of these executables, their "C" source must be �activated� in the project. This is
easily done with the following procedure:

� Step 1: Exclude the Application folder from the build process by right-clicking
the Application folder of the workspace and selecting �Settings\General\Exclude
from build�.

� Step 2: Open the sample folder of the workspace by double-clicking on it. Include
the sample which should be used by right-clicking on it and deselecting �Set-
tings\General\Exclude from build�. The screenshot below shows the sample
DIALOG_SliderColor.c.

� Step 3: Rebuild the sample by choosing Build/Rebuild All from the menu (or
by pressing F7).

� Step 4: Start the simulation by choosing Build/Start Debug/Go from the menu
(or by pressing F5). The result of the sample selected above is pictured below:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 3 Simulator
3.1.2 Using the simulator with the emWin source

3.1.2.1 Directory structure
The root directory of the simulator can be anywhere on your PC, e.g.
C:\work\emWinSim. The directory structure will appear as shown to the
right. This structure is very similar to that which we recommend for
your target application (see Chapter: "Getting Started" for more infor-
mation).
The following table shows the contents of the folders:

If you want to start a new project you should make a copy of the
Start-folder. It contains all you need for a new project. The sub-
directories containing emWin program files are in the Start\GUI
folder and should contain the exact same files as the directories
of the same names which you are using for your target (cross)
compiler. You should not make any changes to the GUI subdirec-
tories, as this would make updating to a newer version of
emWin more difficult.
The Start\Config directory contains configuration files which
need to be modified in order to reflect your target hardware set-
tings (mainly LCD-size and colors which can be displayed).

3.1.2.2 Visual C++ workspace
The root directory shown above includes the
Microsoft Visual C++ workspace (Simulation.dsw)
and project files (Simulation.dsp). The workspace
allows you to modify an application program and
debug it before compiling it on your target system.
The directory structure of the Visual C++ work-
space will appear similar to that shown to the right.
Here, the GUI folder is open to display the emWin
subdirectories. Please note that your GUI directory
may not look exactly like the one pictured, depend-
ing on which additional features of emWin you
have. The folders Core, Font and LCDDriver are
part of the basic emWin package and will always
appear in the workspace directory.

3.1.2.3 Compiling the application
The demo simulation contains one or more applica-
tion "C" files (located in the Application direc-
tory), which can be modified. You may also add
files to or remove files from the project. Typically
you would want to at least change the bitmap to your own company logo or image of
choice. You should then rebuild the program within the Visual C++ workspace in
order to test/debug it. Once you have reached a point where you are satisfied with

Directory Contents

Doc Contains emWin-Documentation.

Sample Code samples, described later in this documentation.

Start All you need to create a new project with emWin

Tool Tools shipped with emWin

Trial Complete trial version
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

29
the result and want to use the program in your application, you should be able to
compile these same files on your target system and get the same result on the target
display. The general procedure for using the simulator would be as follows:

� Step 1: Open the Visual C++ workspace by double-clicking on Simulation.dsw.
� Step 2: Compile the project by choosing Build/Rebuild All from the menu (or

by pressing F7).
� Step 3: Run the simulation by choosing Build/Start Debug/Go from the menu

(or by pressing F5).
� Step 4: Replace the bitmap with your own logo or image.
� Step 5: Make further modifications to the application program as you wish, by

editing the source code or adding/deleting files.
� Step 6: Compile and run the application program within Visual C++ to test the

results. Continue to modify and debug as needed.
� Step 7: Compile and run the application program on your target system.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 3 Simulator
3.2 Device simulation
The simulator can show the simulated LCD in a bitmap of your choice, typically your
target device. The bitmap can be dragged over the screen and may, in certain appli-
cations, be used to simulate the behavior of the entire target device.
In order to simulate the appearance of the device, a bitmap is required. This bitmap
is usually a photo (top view) of the device, and must be named Device.bmp. It may
be a separate file (in the same directory as the executable), or it may be included as
a resource in the application by including the following line in the resource file
(extension .rc):

145 BITMAP DISCARDABLE "Device.bmp"

For more information, please refer to the Win32 documentation.
The size of the bitmap should be such that the size of the area in which the LCD will
be shown equals the resolution of the simulated LCD. This is best seen in the follow-
ing example:

The red area is automatically made transparent. The transparent areas do not have
to be rectangular; they can have an arbitrary shape (up to a certain complexity which
is limited by your operating system, but is normally sufficient). Bright red
(0xFF0000) is the default color for transparent areas, mainly because it is not usually
contained in most bitmaps. To use a bitmap with bright red, the default transparency
color may be changed with the function SIM_SetTransColor().

3.2.1 Device simulator API
All of the device simulator API functions must be called in the setup phase. The calls
should ideally be done from within the routine SIM_X_Init(), which is located in the
file SIM_X.c. The example below calls SIM_SetLCDPos() in the setup:

#include <windows.h>
#include <stdio.h>

#include "SIM.h"

void SIM_X_Init() {
 SIM_SetLCDPos(0,0); // Define the position of the LCD in the bitmap
}

Device bitmap (Device.bmp)
Device including simulated LCD as

visible on screen
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

31
The table below lists the available device-simulation-related routines in alphabetical
order within their respective categories. Detailed descriptions of the routines follow:

SIM_GUI_SetLCDColorBlack(), SIM_GUI_SetLCDColorWhite()
Description
Set the colors to be used as black or white, respectively, on color monochrome dis-
plays.

Prototypes
int SIM_GUI_SetLCDColorBlack(int DisplayIndex, int Color);
int SIM_GUI_SetLCDColorWhite(int DisplayIndex, int Color);

Add. information
These functions can be used to simulate the true background color of your display.
The default color values are black and white, or 0x000000 and 0xFFFFFF.

Example using default settings
void SIM_X_Init() {
 SIM_GUI_SetLCDPos(14,84); // Define the position of the LCD
 in the bitmap
 SIM_GUI_SetLCDColorBlack (0, 0x000000); // Define the color used as black
 SIM_GUI_SetLCDColorWhite (0, 0xFFFFFF); // Define the color used as white
} // (used for colored monochrome displays)

Example using yellow instead of white
void SIM_X_Init() {
 SIM_GUI_SetLCDPos(14,84); // Define the position of the LCD
 in the bitmap
 SIM_GUI_SetLCDColorBlack (0, 0x000000); // Define the color used as black
 SIM_GUI_SetLCDColorWhite (0, 0x00FFFF); // Define the color used as white
} // (used for colored monochrome displays)

Routine Explanation

SIM_GUI_SetLCDColorBlack()
Set the color to be used as black (color monochrome
displays).

SIM_GUI_SetLCDColorWhite()
Set the color to be used as white (color monochrome
displays).

SIM_GUI_SetLCDPos()
Set the position for the simulated LCD within the target
device bitmap.

SIM_GUI_SetMag() Set magnification factors for X and/or Y axis.

SIM_GUI_SetTransColor()
Set the color to be used for transparent areas (default:
0xFF0000).

Parameter Meaning

DisplayIndex Reserved for future use; must be 0.

Color RGB value of the color.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 3 Simulator
SIM_GUI_SetLCDPos()
Description
Sets the position for the simulated LCD within the target device bitmap.

Prototype
void SIM_GUI_SetLCDPos(int x, int y);

Add. information
The X- and Y-positions are relative to the target device bitmap, therefore position
(0,0) refers to the upper left corner (origin) of the bitmap and not your actual LCD.
Only the origin of the simulated screen needs to be specified; the resolution of your
display should already be reflected in the configuration files in the Config directory.
The use of this function enables the use of the bitmaps Device.bmp and
Device1.bmp. Please note that the values need to be >= 0 for enabling the use of the
bitmaps. If the use of the device bitmaps should be disabled, omit the call of this
function in SIM_X_Init().

SIM_GUI_SetMag()
Description
Sets magnification factors for X and/or Y axis.

Prototype
void SIM_GUI_SetMag(int MagX, int MagY);

Add. information
Per default the simulation uses one pixel on the PC for each pixel of the simulated
display. The use of this function makes sense for small displays. If using a device bit-
map together with a magnification > 1 the device bitmap needs to be adapted to the
magnification. The device bitmap is not magnified automatically.

SIM_GUI_SetTransColor()
Description
Sets the color to be used for transparent areas of device or hardkey bitmaps.

Prototype
I32 SIM_GUI_SetTransColor(I32 Color);

Add. information
The default setting for transparency is bright red (0xFF0000).
You would typically only need to change this setting if your bitmap contains the same
shade of red.

Parameter Meaning

x X-position of the upper left corner for the simulated LCD (in pixels).

y Y-position of the upper left corner for the simulated LCD (in pixels).

Parameter Meaning

MagX Magnification factor for X axis.

MagY Magnification factor for Y axis.

Parameter Meaning

Color RGB value of the color in the format 00000000RRRRRRRRGGGGGGGGBBBBBBBB.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

33
3.2.2 Hardkey simulation
Hardkeys may also be simulated as part of the device, and may be selected with the
mouse pointer. The idea is to be able to distinguish whether a key or button on the
simulated device is pressed or unpressed. A hardkey is considered "pressed" as long
as the mouse button is held down; releasing the mouse button or moving the pointer
off of the hardkey "unpresses" the key. A toggle behavior between pressed and
unpressed may also be specified with the routine SIM_HARDKEY_SetMode().
In order to simulate hardkeys, you need a second bitmap of the device which is
transparent except for the keys themselves (in their pressed state). This bitmap can
again be in a separate file in the directory, or included as a resource in the execut-
able. The filename needs to be Device1.bmp, and the following lines would typically
be included in the resource file (extension .rc):

145 BITMAP DISCARDABLE "Device.bmp"
146 BITMAP DISCARDABLE "Device1.bmp"

Hardkeys may be any shape, as long as they are exactly the same size in pixels in
both Device.bmp and Device1.bmp. The following example illustrates this:

When a key is "pressed" with the mouse, the corresponding section of the hardkey
bitmap (Device1.bmp) will overlay the device bitmap in order to display the key in its
pressed state.
The keys may be polled periodically to determine if their states (pressed/unpressed)
have changed and whether they need to be updated. Alternatively, a callback routine
may be set to trigger a particular action to be carried out when the state of a hardkey
changes.

Device bitmap: unpressed hardkey
state (Device.bmp)

Device hardkey bitmap: pressed
hardkey state (Device1.bmp)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 3 Simulator
3.2.2.1 Hardkey simulator API
The hardkey simulation functions are part of the standard simulation program
shipped with emWin. If using a user defined emWin simulation these functions may
not be available. The table below lists the available hardkey-simulation-related rou-
tines in alphabetical order within their respective categories. Detailed descriptions of
the routines follow:

SIM_HARDKEY_GetNum()
Description
Returns the number of available hardkeys.

Prototype
int SIM_HARDKEY_GetNum(void);

Return value
The number of available hardkeys found in the bitmap.

Add. information
The numbering order for hardkeys is standard reading order (left to right, then top to
bottom). The topmost pixel of a hardkey is therefore found first, regardless of its
horizontal position. In the bitmap below, for example, the hardkeys are labeled as
they would be referenced by the KeyIndex parameter in other functions:

It is recommended to call this function in order to verify that a bitmap is properly
loaded.

SIM_HARDKEY_GetState()
Description
Returns the state of a specified hardkey.

Prototype
int SIM_HARDKEY_GetState(unsigned int KeyIndex);

Routine Explanation

SIM_HARDKEY_GetNum() Return the number of available hardkeys.

SIM_HARDKEY_GetState()
Return the state of a specified hardkey (0: unpressed,
1: pressed).

SIM_HARDKEY_SetCallback()
Set a callback routine to be executed when the state of
a specified hardkey changes.

SIM_HARDKEY_SetMode()
Set the behavior for a specified hardkey (default = 0:
no toggle).

SIM_HARDKEY_SetState()
Set the state for a specified hardkey (0: unpressed, 1:
pressed).

Parameter Meaning

KeyIndex Index of hardkey (0 = index of first key).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

35
Return value
State of the specified hardkey:
0: unpressed
1: pressed

SIM_HARDKEY_SetCallback()
Description
Sets a callback routine to be executed when the state of a specified hardkey changes.

Prototype
SIM_HARDKEY_CB * SIM_HARDKEY_SetCallback(unsigned int KeyIndex,

SIM_HARDKEY_CB * pfCallback);

Return value
Pointer to the previous callback routine.

Add. information
Please note that multi tasking support has to be enabled if GUI functions need to be
called within the callback functions. Without multi tasking support only the GUI func-
tions which are allowed to be called within an interrupt routine should be used.
The callback routine must have the following prototype:

Prototype
typedef void SIM_HARDKEY_CB(int KeyIndex, int State);

SIM_HARDKEY_SetMode()
Description
Sets the behavior for a specified hardkey.

Prototype
int SIM_HARDKEY_SetMode(unsigned int KeyIndex, int Mode);

Parameter Meaning

KeyIndex Index of hardkey (0 = index of first key).

pfCallback Pointer to callback routine.

Parameter Meaning

KeyIndex Index of hardkey (0 = index of first key).

State State of the specified hardkey (see table below).

Permitted values for parameter State

0 Unpressed.

1 Pressed.

Parameter Meaning

KeyIndex Index of hardkey (0 = index of first key).

Mode Behavior mode (see table below).

Permitted values for parameter Mode

0 Normal behavior (default).

1 Toggle behavior.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 3 Simulator
Add. information
Normal (default) hardkey behavior means that a key is considered pressed only as
long as the mouse button is held down on it. When the mouse is released or moved
off of the hardkey, the key is considered unpressed.
With toggle behavior, each click of the mouse toggles the state of a hardkey to
pressed or unpressed. That means if you click the mouse on a hardkey and it
becomes pressed, it will remain pressed until you click the mouse on it again.

SIM_HARDKEY_SetState()
Description
Sets the state for a specified hardkey.

Prototype
int SIM_HARDKEY_SetState(unsigned int KeyIndex, int State);

Add. information
This function is only usable when SIM_HARDKEY_SetMode() is set to 1 (toggle mode).

Parameter Meaning

KeyIndex Index of hardkey (0 = index of first key).

State State of the specified hardkey (see table below).

Permitted values for parameter State

0 Unpressed.

1 Pressed.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

37
3.3 Integrating the emWin simulation into an existing
simulation

In order to integrate the emWin simulation into an existing simulation, the source
code of the simulation is not required. The source code of the simulation is not nor-
mally shipped with emWin. It is a separate (optional) software item and is not
included in the emWin basic package.
Normally the source code of the emWin simulation is not needed but available as an
optional software item. As described earlier in this chapter the basic package and the
trial version contains a simulation library. The API functions of this library can be
used if for example the emWin simulation should be added to an existing hardware or
real time kernel (RTOS) simulation.
To add the emWin simulation to an existing simulation (wrtten in "C" or C++, using
the Win32 API), only a few lines of code need to be added.

3.3.1 Directory structure
The subfolder Simulation of the System folder contains the
emWin simulation. The directory structure is shown on the
right. The table below explains the contents of the subfolders:

3.3.2 Using the simulation library
The following steps will show how to use the simulation library to integrate the
emWin simulation into an existing simulation:

� Step 1: Add the simulation library GUISim.lib to the project.
� Step 2: Add all GUI files to the project as described in the chapter 2.1.1, "Subdi-

rectories".
� Step 3: Add the include directories to the project as described in the chapter

2.1.2, "Include Directories".
� Step 4: Modify WinMain.

3.3.2.1 Modifying WinMain
Every windows WIN32 program starts with WinMain() (contrary to a normal "C" pro-
gram from the command line, which starts with main(). All that needs to be done is
to add a few lines of code to this routine.
The following function calls need to be added (normally in this order as show in the
following application code sample):

� SIM_GUI_Init
� SIM_GUI_CreateLCDWindow
� CreateThread
� SIM_GUI_Exit

3.3.2.2 Sample application
The following application is available under Sample\WinMain\SampleApp.c and shows
how to integrate the emWin simulation into an existing application:

Directory Contents

Simulation
Simulation source and header files to be used with and without the simulation
source code. The folder also contains a ready to use simulation library.

Res Resource files.

SIM_GUI GUI simulation source code (optional).

WinMain Contains the WinMain routine.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 3 Simulator
#include <windows.h>
#include "GUI_SIM_Win32.h"
void MainTask(void);

/***
*
* _Thread
*/
static DWORD __stdcall _Thread(void* Parameter) {
 MainTask();
 return 0;
}

/***
*
* _WndProcMain
*/
static LRESULT CALLBACK _WndProcMain(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam) {
 SIM_GUI_HandleKeyEvents(message, wParam);
 switch (message) {
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 }
 return DefWindowProc(hWnd, message, wParam, lParam);
}

/***
*
* _RegisterClass
*/
static void _RegisterClass(HINSTANCE hInstance) {
 WNDCLASSEX wcex;
 memset (&wcex, 0, sizeof(wcex));
 wcex.cbSize = sizeof(WNDCLASSEX);
 wcex.hInstance = hInstance;
 wcex.style = CS_HREDRAW | CS_VREDRAW;
 wcex.lpfnWndProc = (WNDPROC)_WndProcMain;
 wcex.hIcon = 0;
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
 wcex.hbrBackground = (HBRUSH)(COLOR_APPWORKSPACE + 1);
 wcex.lpszMenuName = 0;
 wcex.lpszClassName = "GUIApplication";
 RegisterClassEx(&wcex);
}

/***
*
* WinMain
*/
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow) {
 DWORD ThreadID;
 MSG Msg;
 HWND hWndMain;
 /* Register window class */
 _RegisterClass(hInstance);
 /* Create main window */
 hWndMain = CreateWindow("GUIApplication", "Application window",
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_VISIBLE,
 0, 0, 328, 267, NULL, NULL, hInstance, NULL);
 /* Initialize the emWin simulation and create a LCD window */
 SIM_GUI_Init(hInstance, hWndMain, lpCmdLine, "embOS - emWin Simulation");
 SIM_GUI_CreateLCDWindow(hWndMain, 0, 0, 320, 240, 0);
 /* Create a thread which executes the code to be simulated */
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)_Thread, NULL, 0, &ThreadID);
 /* Main message loop */
 while (GetMessage(&Msg, NULL, 0, 0)) {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
 SIM_GUI_Exit();
}

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

39
3.3.3 Integration into the embOS Simulation

3.3.3.1 WinMain
The following code sample shows how to modify the existing WinMain of the embOS
simulation in order to integrate the emWin simulation. The red colored lines should
be added to WinMain to initialize the emWin simulation, to create a simulation win-
dow and to exit the emWin simulation:

...
#include "GUI_SIM_Win32.h"
...
int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow) {
MSG Msg;
HACCEL hAccelTable;
 HWND hWndMain;
 BITMAP BmpDevice;
 DWORD ThreadID;
 /* Init global data */
 _StopHyperThreading();
 _hInst = hInstance;
 /* Register main window class */
 _RegisterClass();
 /* Load bitmap */
 _hBmpDevice = (HBITMAP)LoadImage(_hInst,
 (LPCTSTR) IDB_DEVICE,
 IMAGE_BITMAP, 0, 0, 0);
 _hMenuPopup = LoadMenu(_hInst, (LPCSTR)IDC_CONTEXTMENU);
 _hMenuPopup = GetSubMenu(_hMenuPopup, 0);
 /* Create main window */
 GetObject(_hBmpDevice, sizeof(BmpDevice), &BmpDevice);
 hWndMain = CreateWindowEx(WS_EX_TOPMOST, _sWindowClass,
 "embOS Simulation",
 WS_SYSMENU | WS_CLIPCHILDREN | WS_POPUP | WS_VISIBLE,
 10, 20, BmpDevice.bmWidth, BmpDevice.bmHeight,
 NULL, NULL, _hInst, NULL);
 if (!hWndMain) {
 return 1; /* Error */
 }
 /* Init emWin simulation and create window */
 SIM_GUI_Init(hInstance, hWndMain, lpCmdLine, "embOS - emWin Simulation");
 SIM_GUI_CreateLCDWindow(hWndMain, 80, 50, 128, 64, 0);
 /* Show main window */
 ShowWindow(hWndMain, nCmdShow);
 /* Load accelerator table */
 hAccelTable = LoadAccelerators(_hInst, (LPCTSTR)IDC_WINMAIN);
 /* application initialization: */
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)Thread, NULL, 0, &ThreadID);
 /* main message loop */
 if (SIM_Init(hWndMain) == 0) {
 while (GetMessage(&Msg, NULL, 0, 0)) {
 if (!TranslateAccelerator(Msg.hwnd, hAccelTable, &Msg)) {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
 }
 }
 /* Exit emWin simulation */
 SIM_GUI_Exit();
 return 0;
}

3.3.3.2 Target program (main)
The emWIn API can be called from one or more target threads. Without RTOS, the
WIN32 API function CreateThread is normally used to create a target thread which
calls the emWin API; within an RTOS simulation, a target task/thread (Created by the
simulated RTOS) is used to call the emWin API. In other words: Use OS_CreateTask
to create a task for the user interface.

Below a modified embOS start application:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 3 Simulator
#include "RTOS.H"
#include "HW_LED.h"
#include "GUI.h"

OS_STACKPTR int Stack0[128], Stack1[128], Stack2[2000]; /* Task stacks */
OS_TASK TCB0, TCB1, TCB2; /* Task-control-blocks */

void Task0(void) {
 while (1) {
 HW_LED_Toggle0();
 OS_Delay(100);
 }
}

void Task1(void) {
 while (1) {
 HW_LED_Toggle1();
 OS_Delay(500);
 }
}

void MainTask(void) {
 GUI_COLOR aColor[] = {GUI_RED, GUI_YELLOW};
 GUI_Init();
 while (1) {
 int i;
 for (i = 0; i < 2; i++) {
 GUI_Clear();
 GUI_SetColor(aColor[i]);
 GUI_SetFont(&GUI_FontComic24B_ASCII);
 GUI_DispStringAt("Hello world!", 1, 1);
 OS_Delay(200);
 }
 }
}

/**
*
* main
*
**/
#include <windows.h>
void main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCB0, "HP Task", Task0, 100, Stack0);
 OS_CREATETASK(&TCB1, "LP Task", Task1, 50, Stack1);
 OS_CREATETASK(&TCB2, "GUI Task", MainTask, 80, Stack2);
 OS_Start(); /* Start multitasking */
}

The following table shows the simulation before and after integrating the emWin sim-
ulation:

Before After
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

41
3.3.4 GUI simulation API
The table below lists the available routines for user defined simulation programms in
alphabetical order within their respective categories. The functions are only available
with the source code of the emWin simulation. Detailed descriptions of the routines
follow:

SIM_GUI_CreateLCDInfoWindow()
Description
Creates a window which shows the available colors for the given layer.

Prototype
HWND SIM_GUI_CreateLCDInfoWindow(HWND hParent,
 int x, int y, int xSize, int ySize

 int LayerIndex);

Add. information
The created color window has no frame, no title bar and no buttons.

Example
SIM_GUI_CreateLCDInfoWindow(hWnd, 0, 0, 160, 160, 0);

Screenshot

SIM_GUI_CreateLCDWindow()
Description
Creates a window which simulates a LCD display with the given size at the given
position.

Prototype
HWND SIM_GUI_CreateLCDWindow(HWND hParent,

Routine Explanation

SIM_GUI_CreateLCDInfoWindow()
Creates a window which shows the available colors of
the given layer with the given size and position.

SIM_GUI_CreateLCDWindow() Creates a LCD window with the given size and position.

SIM_GUI_Exit() Stops the GUI simulation.

SIM_GUI_Init() Initializes the GUI simulation.

SIM_GUI_SetLCDWindowHook()
Sets a hook function to be called if the LCD window
receives a message.

Parameter Meaning

hParent Handle of the parent window.

x X position in parent coordinates.

y Y position in parent coordinates.

xSize
X size in pixel of the new window. Should be 160 if using a color depth between 1 and
8 or 128 if working in high color mode.

ySize
Y size in pixel of the new window. Should be 160 if using a color depth between 1 and
8 or 128 if working in high color mode.

LayerIndex Index of layer to be shown.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 3 Simulator
 int x, int y, int xSize, int ySize

 int LayerIndex);

Add. information
All display output to the given layer will be shown in this window. The size of the win-
dow should be the same as configured in LCDConf.h.
The created simulation window has no frame, no title bar and no buttons.

SIM_GUI_Exit()
Description
The function should be called before the simulation returns to the calling process.

Prototype
void SIM_GUI_Exit(void);

SIM_GUI_Init()
Description
This function initializes the emWin simulation and should be called before any other
SIM_GUI... function call.

Prototype
int SIM_GUI_Init(HINSTANCE hInst, HWND hWndMain,

 char * pCmdLine, const char * sAppName);

Add. information
The parameters hWndMain and sAppName are used if a message box should be dis-
played.

SIM_GUI_SetLCDWindowHook()
Description
Sets a hook function to be called from the simulation if the LCD window receives a
message.

Prototype
void SIM_GUI_SetLCDWindowHook(SIM_GUI_tfHook * pfHook);

Parameter Meaning

hParent Handle of the parent window.

x X position in parent coordinates.

y Y position in parent coordinates.

xSize X size in pixel of the new window.

ySize Y size in pixel of the new window.

LayerIndex Index of layer to be shown.

Parameter Meaning

hInst Handle to current instance passed to WinMain.

hWndMain Handle of the simulations main window.

pCmdLine Pointer to command line passed to WinMain

sAppName Pointer to a string that contains the application name.

Parameter Meaning

pfHook Pointer to hook function.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

43
Prototype of hook function
int Hook(HWND hWnd, UINT Message, WPARAM wParam, LPARAM lParam,

 int * pResult);

Return value
The hook function should return 0 if the message has been processed. In this case
the GUI simulation ignores the message.

Parameter Meaning

hWnd Handle of LCD window.

Message Message received from the operating system.

wParam wParam message parameter passed by the system.

lParam lParam message parameter passed by the system.

pResult
Pointer to an integer which should be used as return code if the message has been
processed by the hook function.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 3 Simulator
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

45
Chapter 4

Viewer
If you use the simulator when debugging your application, you cannot see the display
output when stepping through the source code. The primary purpose of the viewer is
to solve this problem. It shows the contents of the simulated display(s) while debug-
ging in the simulation.

The viewer gives you the following additional capabilities:

� Multiple windows for each layer
� Watching the whole virtual layer in one window
� Magnification of each layer window
� Composite view if using multiple layers
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 4 Viewer
4.1 Using the viewer
The viewer allows you to:
� Open multiple windows for any

layer/display
� Zoom in on any area of a layer/

display
� See the contents of the individ-

ual layers/displays as well as
the composite view in multi-
layer configurations

� See the contents of the virtual
screen and the visible display
when using the virtual screen
support.

The screenshot shows the viewer
displaying the output of a single
layer configuration. The upper left
corner shows the simulated display.
In the upper right corner is a win-
dow, which shows the available col-
ors of the display configuration. At
the bottom of the viewer a second
display window shows a magnified
area of the simulated display. If you
start to debug your application, the viewer shows one display window per layer and
one color window per layer. In a multi layer configuration, a composite view window
will also be visible.

4.1.1 Using the simulator and the viewer
If you use the simulator when debugging your application, you cannot see the display
output when stepping through the source code. This is due to a limitation of Win32:
If one thread (the one being debugged) is halted, all other threads of the process are
also halted. This includes the thread which outputs the simulated display on the
screen.
The emWin viewer solves this problem by showing the display window and the color
window of your simulation in a separate process. It is your choice if you want to start
the viewer before debugging your application or while you are debugging. Our sug-
gestion:

� Step 1: Start the viewer. No display- or color window is shown until the simula-
tion has been started.

� Step 2: Open the Visual C++ workspace.
� Step 3: Compile and run the application program.
� Step 4: Debug the application as described previously.

The advantage is that you can now follow all drawing operations step by step in the
LCD window.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

47
4.1.2 Using the viewer with virtual pages
By default the viewer opens one window per layer which shows the visible part of the
video RAM, normally the display. If the configured virtual video RAM is larger than
the display, the command View/Virtual Layer/Layer (0...4) can be used to show
the whole video RAM in one window. When using the function GUI_SetOrg(), the con-
tents of the visible screen will change, but the virtual layer window remains
unchanged:

For more information about virtual screens please refer to chapter �Virtual Screens�.

4.1.3 Always on top
Per default the viewer window is always on top. You can change this behavior by
selecting Options\Always on top from the menu.

4.1.4 Open further windows of the display output
If you want to show a magnified area of the LCD output or the composite view of a
multi layer configuration it could be useful to open more than one output window.
You can do this by View/Visible Layer/Layer (1...4), View/Virtual Layer/
Layer (1...4) or View/Composite.

4.1.5 Zooming
Zooming in or out is easy:
Right-click on a layer or composite window opens the Zoom popup menu.

Page 0

always
"Main screen"

Page 1

always
"Setup" screen

Page 2

used for dif-
ferent screens

Visible screen
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 4 Viewer
Choose one of the zoom options:

Using the grid

If you magnify the LCD output >= 300%, you have the choice between showing the
output with or without a grid. It is possible to change the color of the grid. This can
be done choosing the Menu point Options/Grid color.

Adapting the size of the window
If you want to adapt the size of the window to the magnification choose Fit window
to size from the first popup menu.

4.1.6 Copy the output to the clipboard
Click onto a LCD window or a composite view with the right mouse key and choose
Copy to clipboard. Now you can paste the contents of the clipboard for example
into the mspaint application.

4.1.7 Using the viewer with multiple displays
If you are working with multiple displays you should set the viewer into �Multi display
mode� by using the command Options/Multi layer/display.

When starting the debugger the viewer will open one display window and one color
window for each display:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

49
4.1.8 Using the viewer with multiple layers
If you are working with multiple layers you should set the viewer into �Multi layer
mode� by using the command Options/Multi layer/display.

When starting the debugger the viewer will open one LCD window and one color win-
dow for each layer and one composite window for the result.

Sample
The sample below shows a screenshot of the viewer with 2 layers. Layer 0 shows
color bars with a high color configuration. Layer 1 shows a transparent circle on a
white background with colored rectangles. The composite window shows the result
which is actually visible on the display

Transparency
The composite window of the viewer shows all layers; layers with higher index are on
top of layers with lower index and can have transparent pixels:

Layer 0

Layer 1

No transparency . . .

Layer n

Pixels can be transparent
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 4 Viewer
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

51
Chapter 5

Displaying Text
It is very easy to display text with emWin. Knowledge of only a few routines already
allows you to write any text, in any available font, at any point on the display. We
first provide a short introduction to displaying text, followed by more detailed expla-
nations of the individual routines that are available.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 5 Displaying Text
5.1 Basic routines
In order to display text on the LCD, simply call the routine GUI_DispString() with
the text you want to display as parameters. For example:

GUI_DispString("Hello world!");

The above code will display the text "Hello world" at the current text position. How-
ever, as you will see, there are routines to display text in a different font or in a cer-
tain position. In addition, it is possible to write not only strings but also decimal,
hexadecimal and binary values to the display. Even though the graphic displays are
usually byte-oriented, the text can be positioned at any pixel of the display, not only
at byte positions.

Control characters
Control characters are characters with a character code of less than 32. The control
characters are defined as part of ASCII. emWin ignores all control characters except
for the following:

Usage of the control character LF can be very convenient in strings. A line feed can
be made part of a string so that a string spanning multiple lines can be displayed
with a single routine call.

Positioning text at a selected position
This may be done by using the routine GUI_GotoXY() as shown in the following
example:

GUI_GotoXY(10,10);// Set text position (in pixels)
GUI_DispString("Hello world!");// Show text

5.2 Text API
The table below lists the available text-related routines in alphabetical order within
their respective categories. Detailed descriptions of the routines can be found in the
sections that follow.

Char.
Code

ASCII
code

"C" Meaning

10 LF \n

Line feed.
The current text position is changed to the beginning of the next line. Per
default, this is: X = 0.
Y + =font-distance in pixels (as delivered by GUI_GetFontDistY()).

13 CR \r
Carriage return.
The current text position is changed to the beginning of the current line. Per
default, this is: X = 0.

Routine Explanation

Routines to display text
GUI_DispChar() Displays single character at current position.

GUI_DispCharAt() Displays single character at specified position.

GUI_DispChars() Displays character a specified number of times.

GUI_DispNextLine() Moves the cursor to the beginning of the next line.

GUI_DispString() Displays string at current position.

GUI_DispStringAt() Displays string at specified position.

GUI_DispStringAtCEOL() Displays string at specified position, then clear to end of line.

GUI_DispStringHCenterAt() Displays string centered horizontally at the given position.

GUI_DispStringInRect() Displays string in specified rectangle.

GUI_DispStringInRectWrap() Displays string in specified rectangle with optional wrapping.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

53
5.3 Routines to display text

GUI_DispChar()
Description
Displays a single character at the current text position in the current window using
the current font.

Prototype
void GUI_DispChar(U16 c);

Add. information
This is the basic routine for displaying a single character. All other display routines
(GUI_DispCharAt(), GUI_DispString(), etc.) call this routine to output the individ-
ual characters.
Which characters are available depends on the selected font. If the character is not
available in the current font, nothing is displayed.

Example
Shows a capital A on the display:
GUI_DispChar('A');

Related topics
GUI_DispChars(), GUI_DispCharAt()

GUI_DispStringLen()
Display string at current position with specified number of char-
acters.

Selecting text drawing modes
GUI_GetTextMode() Returns the current text mode

GUI_SetTextMode() Sets text drawing mode.

GUI_SetTextStyle() Sets the text style to be used.

Selecting text alignment
GUI_GetTextAlign() Return current text alignment mode.

GUI_SetLBorder() Set left border after line feed.

GUI_SetTextAlign() Set text alignment mode.

Setting the current text position
GUI_GotoX() Set current X-position.

GUI_GotoXY() Set current (X,Y) position.

GUI_GotoY() Set current Y-position.

Retrieving the current text position
GUI_GetDispPosX() Return current X-position.

GUI_GetDispPosY() Return current Y-position.

Routines to clear a window or parts of it

GUI_Clear()
Clear active window (or entire display if background is the active
window).

GUI_DispCEOL() Clear display from current text position to end of line.

Parameter Meaning

c Character to display.

Routine Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 5 Displaying Text
GUI_DispCharAt()
Description
Displays a single character at a specified position in the current window using the
current font.

Prototype
void GUI_DispCharAt(U16 c, I16P x, I16P y);

Add information
Displays the character with its upper left corner at the specified (X,Y) position.
Writes the character using the routine GUI_DispChar().
If the character is not available in the current font, nothing is displayed.

Example
Shows a capital A on the display in the upper left corner:
GUI_DispCharAt('A',0,0);

Related topics
GUI_DispChar(), GUI_DispChars()

GUI_DispChars()
Description
Displays a character a specified number of times at the current text position in the
current window using the current font.

Prototype
void GUI_DispChars(U16 c, int Cnt);

Add. information
Writes the character using the routine GUI_DispChar().
If the character is not available in the current font, nothing is displayed.

Example
Shows the line "******************************" on the display:
GUI_DispChars('*', 30);

Related topics
GUI_DispChar(), GUI_DispCharAt()

GUI_DispNextLine()
Description
Moves the cursor to the beginning of the next line.

Prototype
void GUI_DispNextLine(void);

Parameter Meaning

c Character to display.

x X-position to write to in pixels of the client window.

y Y-position to write to in pixels of the client window.

Parameter Meaning

c Character to display.

Cnt Number of repetitions (0 <= Cnt <= 32767).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

55
Related topics
GUI_SetLBorder()

GUI_DispString()
Description
Displays the string passed as parameter at the current text position in the current
window using the current font.

Prototype
void GUI_DispString(const char GUI_FAR *s);

Add. information
The string can contain the control character \n. This control character moves the cur-
rent text position to the beginning of the next line.

Example
Shows "Hello world" on the display and "Next line" on the next line:
GUI_DispString("Hello world");// Disp text
GUI_DispString("\nNext line");// Disp text

Related topics
GUI_DispStringAt(), GUI_DispStringAtCEOL(), GUI_DispStringLen(),

GUI_DispStringAt()
Description
Displays the string passed as parameter at a specified position in the current window
using the current font.

Prototype
void GUI_DispStringAt(const char GUI_FAR *s, int x, int y);

Example
Shows "Position 50,20" at position 50,20 on the display:
GUI_DispStringAt("Position 50,20", 50, 20);// Disp text

Related topics
GUI_DispString(), GUI_DispStringAtCEOL(), GUI_DispStringLen(),

GUI_DispStringAtCEOL()
Description
This routine uses the exact same parameters as GUI_DispStringAt(). It does the
same thing: displays a given string at a specified position. However, after doing so, it
clears the remaining part of the line to the end by calling the routine
GUI_DispCEOL(). This routine can be handy if one string is to overwrite another, and
the overwriting string is or may be shorter than the previous one.

Parameter Meaning

s String to display.

Parameter Meaning

s String to display.

x X-position to write to in pixels of the client window.

y Y-position to write to in pixels of the client window.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 5 Displaying Text
GUI_DispStringHCenterAt()
Description
Displays the string passed as parameter horizontaly centered at a specified position
in the current window using the current font.

Prototype
void GUI_DispStringHCenterAt(const char GUI_FAR *s, int x, int y);

GUI_DispStringInRect()
Description
Displays the string passed as parameter at a specified position within a specified
rectangle, in the current window using the current font.

Prototype
void GUI_DispStringInRect(const char GUI_FAR *s, GUI_RECT *pRect, int
Align);

Example
Shows the word "Text" centered horizontally and vertically in the current window:
GUI_RECT rClient;
GUI_GetClientRect(&rClient);
GUI_DispStringInRect("Text", &rClient, GUI_TA_HCENTER | GUI_TA_VCENTER);

Add. information
If the specified rectangle is too small, the text will be clipped.

Related topics
GUI_DispString(), GUI_DispStringAtCEOL(), GUI_DispStringLen(),

GUI_DispStringInRectWrap()
Description
Displays a string at a specified position within a specified rectangle, in the current
window using the current font and (optionaly) wraps the text.

Prototype
void GUI_DispStringInRectWrap(const char GUI_UNI_PTR * s,
 GUI_RECT * pRect,
 int TextAlign,

Parameter Meaning

s String to display.

x X-position to write to in pixels of the client window.

y Y-position to write to in pixels of the client window.

Parameter Meaning

s String to display.

pRect Rectangle to write to in pixels of the client window.

Align

Alignment flags; "OR" combinable. A flag for horizontal and a flag for vertical alignment
should be combined. Available flags are:
GUI_TA_TOP, GUI_TA_BOTTOM, GUI_TA_VCENTER for vertical alignment.
GUI_TA_LEFT, GUI_TA_RIGHT, GUI_TA_HCENTER for horizontal alignment.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

57
 GUI_WRAPMODE WrapMode);

Add. information
If word wrapping should be performed and the given rectangle is too small for a word
char wrapping is executed at this word.

Example
Shows a text centered horizontally and vertically in the given rectangle with word
wrapping:
int i;
char acText[] = "This sample demonstrates text wrapping";
GUI_RECT Rect = {10, 10, 59, 59};
GUI_WRAPMODE aWm[] = {GUI_WRAPMODE_NONE,
 GUI_WRAPMODE_CHAR,
 GUI_WRAPMODE_WORD};
GUI_SetTextMode(GUI_TM_TRANS);
for (i = 0; i < 3; i++) {
 GUI_SetColor(GUI_BLUE);
 GUI_FillRectEx(&Rect);
 GUI_SetColor(GUI_WHITE);
 GUI_DispStringInRectWrap(acText, &Rect, GUI_TA_LEFT, aWm[i]);
 Rect.x0 += 60;
 Rect.x1 += 60;
}

Screenshot of above example

GUI_DispStringLen()
Description
Displays the string passed as parameter with a specified number of characters at the
current text position, in the current window using the current font.

Prototype
void GUI_DispStringLen(const char GUI_FAR *s, int Len);

Parameter Meaning

s String to display.

pRect Rectangle to write to in pixels of the client window.

TextAlign

Alignment flags; "OR" combinable. A flag for horizontal and a flag for vertical align-
ment should be combined. Available flags are:
GUI_TA_TOP, GUI_TA_BOTTOM, GUI_TA_VCENTER for vertical alignment.
GUI_TA_LEFT, GUI_TA_RIGHT, GUI_TA_HCENTER for horizontal alignment.

WrapMode (see table below)

Permitted values for parameter pLCD_Api

GUI_WRAPMODE_NONE No wrapping will be performed.

GUI_WRAPMODE_WORD Text is wrapped word wise.

GUI_WRAPMODE_CHAR Text is wrapped char wise.

Parameter Meaning

s
String to display. Should be a \0 terminated array of 8-bit character. Passing NULL as
parameter is permitted.

Len Number of characters to display.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 5 Displaying Text
Add. information
If the string has less characters than specified (is shorter), it is padded with spaces.
If the string has more characters than specified (is longer), then only the given num-
ber of characters is actually displayed.
This function is especially useful if text messages can be displayed in different lan-
guages (and will naturally differ in length), but only a certain number of characters
can be displayed.

Related topics
GUI_DispString(), GUI_DispStringAt(), GUI_DispStringAtCEOL(),

5.4 Selecting text drawing modes
Normally, text is written into the selected window at the current text position using
the selected font in normal text. Normal text means that the text overwrites what-
ever is already displayed where the bits set in the character mask are set on the dis-
play. In this mode, active bits are written using the foreground color, while inactive
bits are written with the background color. However, in some situations it may be
desirable to change this default behavior. emWin offers four flags for this purpose
(one default plus three modifiers), which may be combined:

Normal text
Text can be displayed normally by specifying GUI_TEXTMODE_NORMAL or 0.

Reverse text
Text can be displayed in reverse by specifying GUI_TEXTMODE_REVERSE. What is usu-
ally displayed as white on black will be displayed as black on white.

Transparent text
Transparent text means that the text is written on top of whatever is already visible
on the display. The difference is that whatever was previously on the screen can still
be seen, whereas with normal text the background is erased.
Text can be displayed transparently by specifying GUI_TEXTMODE_TRANS.

XOR text
What usually is drawn white (the actual character) is inverted. The effect is identical
to that of the default mode (normal text) if the background is black. If the back-
ground is white, the output is identical to reverse text.
If you use colors, an inverted pixel is calculated as follows:
New pixel color = number of colors - actual pixel color - 1.

Transparent reversed text
As with transparent text, it does not overwrite the background, and as with reverse
text, the text is displayed in reverse.
Text can be displayed in reverse transparently by specifying GUI_TEXTMODE_TRANS |
GUI_TEXTMODE_REVERSE.

Example
Displays normal, reverse, transparent, XOR, and transparent reversed text:
 GUI_SetFont(&GUI_Font8x16);
 GUI_SetBkColor(GUI_BLUE);
 GUI_Clear();
 GUI_SetPenSize(10);
 GUI_SetColor(GUI_RED);
 GUI_DrawLine(80, 10, 240, 90);
 GUI_DrawLine(80, 90, 240, 10);
 GUI_SetBkColor(GUI_BLACK);
 GUI_SetColor(GUI_WHITE);
 GUI_SetTextMode(GUI_TM_NORMAL);
 GUI_DispStringHCenterAt("GUI_TM_NORMAL" , 160, 10);
 GUI_SetTextMode(GUI_TM_REV);
 GUI_DispStringHCenterAt("GUI_TM_REV" , 160, 26);
 GUI_SetTextMode(GUI_TM_TRANS);
 GUI_DispStringHCenterAt("GUI_TM_TRANS" , 160, 42);
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

59
 GUI_SetTextMode(GUI_TM_XOR);
 GUI_DispStringHCenterAt("GUI_TM_XOR" , 160, 58);
 GUI_SetTextMode(GUI_TM_TRANS | GUI_TM_REV);
 GUI_DispStringHCenterAt("GUI_TM_TRANS | GUI_TM_REV", 160, 74);

 Screen shot of above example

GUI_GetTextMode()
Description
Returns the currently selected text mode.

Prototype
int GUI_GetTextMode(void);

Return value
The currently selected text mode.

GUI_SetTextMode()
Description
Sets the text mode to the parameter specified.

Prototype
int GUI_SetTextMode(int TextMode);

Return value
The previous selected text mode.

Example
Shows "The value is" at position 0,0 on the display, shows a value in reverse text,
then sets the text mode back to normal:
int i = 20;
GUI_DispStringAt("The value is", 0, 0);
GUI_SetTextMode(GUI_TEXTMODE_REVERSE);
GUI_DispDec(20, 3);
GUI_SetTextMode(GUI_TEXTMODE_NORMAL);

Parameter Meaning

TextMode Text mode to set. May be any combination of the TEXTMODE flags.

Permitted values for parameter TextMode (OR-combinable)

GUI_TEXTMODE_NORMAL Sets normal text. This is the default setting;
the value is identical to 0.

GUI_TEXTMODE_REVERSE Sets reverse text.

GUI_TEXTMODE_TRANSPARENT Sets transparent text.

GUI_TEXTMODE_XOR Text will be inverted on the display.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 5 Displaying Text
GUI_SetTextStyle()
Description
Sets the text style to the parameter specified.

Prototype
char GUI_SetTextStyle(char Style);

Return value
The previous selected text style.

5.5 Selecting text alignment

GUI_GetTextAlign()
Description
Returns the current text alignment mode.

Prototype
int GUI_GetTextAlign(void);

GUI_SetLBorder()
Description
Sets the left border for line feeds in the current window.

Prototype
void GUI_SetLBorder(int x)

GUI_SetTextAlign()
Description
Sets the text alignment mode for string output in the current window.

Prototype
int GUI_SetTextAlign(int TextAlign);

Parameter Meaning

Style Text style to set (see table below).

Permitted values for parameter Style

GUI_TS_NORMAL Renders text normal (default).

GUI_TS_UNDERLINE Renders text underlined.

GUI_TS_STRIKETHRU Renders text in strikethrough type.

GUI_TS_OVERLINE Renders text in overline type.

Parameter Meaning

x New left border (in pixels, 0 is left border).

Parameter Meaning

TextAlign
Text alignment mode to set. May be a combination of a horizontal and a vertical
alignment flag.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

61
Return value
The selected text alignment mode.

Add. information
GUI_SetTextAllign() does not affect the character output routines beginning with
GUI_DispChar(). Please note that the settings made with this function are valid only
for one string.

Example
Displays the value 1234 with the center of the text at x=100, y=100:
GUI_SetTextAlign(GUI_TA_HCENTER | GUI_TA_VCENTER);
GUI_DispDecAt(1234,100,100,4);

5.6 Setting the current text position
Every task has a current text position. This is the position relative to the origin of the
window (usually (0,0)) where the next character will be written if a text output rou-
tine is called. Initially, this position is (0,0), which is the upper left corner of the cur-
rent window. There are 3 functions which can be used to set the current text
position.

GUI_GotoXY(), GUI_GotoX(), GUI_GotoY()
Description
Set the current text write position.

Prototypes
char GUI_GotoXY(int x, int y);
char GUI_GotoX(int x);
char GUI_GotoY(int y);

Return value
Usually 0.
If a value ! = 0 is returned, then the current text position is outside of the window (to
the right or below), so a following write operation can be omitted.

Add. information
GUI_GotoXY() sets both the X- and Y-components of the current text position.
GUI_GotoX() sets the X-component of the current text position; the Y-component
remains unchanged.
GUI_GotoY() sets the Y-component of the current text position; the X-component
remains unchanged.

Permitted values for parameter TextAlign
(horizontal and vertical flags are OR-combinable)

Horizontal alignment
GUI_TA_LEFT Align X-position left (default).

GUI_TA_HCENTER Center X-position.

GUI_TA_RIGHT Align X-position right.

Vertical alignment
GUI_TA_TOP Align Y-position with top of characters (default).

GUI_TA_VCENTER Center Y-position.

GUI_TA_BOTTOM Align Y-position with bottom pixel line of font.

Parameter Meaning

x New X-position (in pixels, 0 is left border).

y New Y-position (in pixels, 0 is top border).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 5 Displaying Text
Example
Shows "(20,20)" at position 20,20 on the display:
GUI_GotoXY(20,20)
GUI_DispString("The value is");

5.7 Retrieving the current text position

GUI_GetDispPosX()
Description
Returns the current X-position.

Prototype
int GUI_GetDispPosX(void);

GUI_GetDispPosY()
Description
Returns the current Y-position.

Prototype
int GUI_GetDispPosY(void);

5.8 Routines to clear a window or parts of it

GUI_Clear()
Description
Clears the current window.

Prototype
void GUI_Clear(void);

Add. information
If no window has been defined, the current window is the entire display. In this case,
the entire display is cleared.

Example
Shows "Hello world" on the display, waits 1 second and then clears the display:
GUI_DispStringAt("Hello world", 0, 0);// Disp text
GUI_Delay(1000);// Wait 1 second (not part of emWin)
GUI_Clear();// Clear screen

GUI_DispCEOL()
Description
Clears the current window (or the display) from the current text position to the end
of the line using the height of the current font.

Prototype
void GUI_DispCEOL(void);

Example
Shows "Hello world" on the display, waits 1 second and then displays "Hi" in the same
place, replacing the old string:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

63
GUI_DispStringAt("Hello world", 0, 0);// Disp text
Delay (1000);
GUI_DispStringAt("Hi", 0, 0);
GUI_DispCEOL();
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 5 Displaying Text
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

65
Chapter 6

Displaying Values
The preceding chapter explained how to show strings on the display. Of course you
may use strings and the functions of the standard "C" library to display values. How-
ever, this can sometimes be a difficult task. It is usually much easier (and much more
efficient) to call a routine that displays the value in the form that you want. emWin
supports different decimal, hexadecimal and binary outputs. The individual routines
are explained in this chapter.
All functions work without the usage of a floating-point library and are optimized for
both speed and size. Of course sprintf may also be used on any system. Using the
routines in this chapter can sometimes simplify things and save both ROM space and
execution time.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 6 Displaying Values
6.1 Value API
The table below lists the available value-related routines in alphabetical order within
their respective categories. Detailed descriptions of the routines can be found in the
sections that follow.

6.2 Displaying decimal values

GUI_DispDec()
Description
Displays a value in decimal form with a specified number of characters at the current
text position, in the current window using the current font.

Prototype
void GUI_DispDec(I32 v, U8 Len);

Routine Explanation

Displaying decimal values

GUI_DispDec()
Display value in decimal form at current position with specified number
of characters.

GUI_DispDecAt()
Display value in decimal form at specified position with specified num-
ber of characters.

GUI_DispDecMin()
Display value in decimal form at current position with minimum number
of characters.

GUI_DispDecShift()
Display long value in decimal form with decimal point at current posi-
tion with specified number of characters.

GUI_DispDecSpace()
Display value in decimal form at current position with specified number
of characters, replace leading zeros with spaces.

GUI_DispSDec()
Display value in decimal form at current position with specified number
of characters and sign.

GUI_DispSDecShift()
Display long value in decimal form with decimal point at current posi-
tion with specified number of characters and sign.

Displaying floating-point values
GUI_DispFloat() Display floating-point value with specified number of characters.

GUI_DispFloatFix()
Display floating-point value with fixed no. of digits to the right of deci-
mal point.

GUI_DispFloatMin() Display floating-point value with minimum number of characters.

GUI_DispSFloatFix()
Display floating-point value with fixed no. of digits to the right of deci-
mal point and sign.

GUI_DispSFloatMin()
Display floating-point value with minimum number of characters and
sign.

Displaying binary values
GUI_DispBin() Display value in binary form at current position.

GUI_DispBinAt() Display value in binary form at specified position.

Displaying hexadecimal values
GUI_DispHex() Display value in hexadecimal form at current position.

GUI_DispHexAt() Display value in hexadecimal form at specified position.

Version of emWin
GUI_GetVersionString() Return the current version of emWin.

Parameter Meaning

v
Value to display.
Minimum -2147483648 (= -2^31).
Maximum 2147483647 (= 2^31 -1).

Len No. of digits to display (max. 10).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

67
Add. information
Leading zeros are not suppressed (are shown as 0).
If the value is negative, a minus sign is shown.

Example
// Display time as minutes and seconds
 GUI_DispString("Min:");
 GUI_DispDec(Min,2);
 GUI_DispString(" Sec:");
 GUI_DispDec(Sec,2);

Related topics
GUI_DispSDec(), GUI_DispDecAt(), GUI_DispDecMin(), GUI_DispDecSpace()

GUI_DispDecAt()
Description
Displays a value in decimal form with a specified number of characters at a specified
position, in the current window using the current font.

Prototype
void GUI_DispDecAt(I32 v, I16P x, I16P y, U8 Len);

Add. information
Leading zeros are not suppressed.
If the value is negative, a minus sign is shown.

Example
// Update seconds in upper right corner
GUI_DispDecAT(Sec, 200, 0, 2);

Related topics
GUI_DispDec(), GUI_DispSDec(), GUI_DispDecMin(), GUI_DispDecSpace()

GUI_DispDecMin()
Description
Displays a value in decimal form at the current text position in the current window
using the current font. The length need not be specified; the minimum length will
automatically be used.

Prototype
void GUI_DispDecMin(I32 v);

Add. information
If values have to be aligned but differ in the number of digits, this function is not a
good choice. Try one of the functions that specify the number of digits.

Parameter Meaning

v
Value to display.
Minimum -2147483648 (= -2^31).
Maximum 2147483647 (= 2^31 -1).

x X-position to write to in pixels of the client window.

y Y-position to write to in pixels of the client window.

Len No. of digits to display (max. 10).

Parameter Meaning

v
Value to display.
Minimum: -2147483648 (= -2^31); maximum 2147483647 (= 2^31 -1).
Maximum no. of digits displayed is 10.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 6 Displaying Values
Example
// Show result
GUI_DispString("The result is :");
GUI_DispDecMin(Result);

Related topics
GUI_DispDec(), GUI_DispDecAt(), GUI_DispSDec(), GUI_DispDecSpace()

GUI_DispDecShift()
Description
Displays a long value in decimal form with a specified number of characters and with
decimal point at the current text position, in the current window using the current
font.

Prototype
void GUI_DispDecShift(I32 v, U8 Len, U8 Shift);

Add. information
Watch the maximum number of 9 characters (including sign and decimal point).

GUI_DispDecSpace()
Description
Displays a value in decimal form at the current text position in the current window
using the current font. Leading zeros are suppressed (replaced by spaces).

Prototype
void DispDecSpace(I32 v, U8 MaxDigits);

Add. information
If values have to be aligned but differ in the number of digits, this function is a good
choice.

Example
// Show result
GUI_DispString("The result is :");
GUI_DispDecSpace(Result, 200);

Related topics
GUI_DispDec(), GUI_DispDecAt(), GUI_DispSDec(), GUI_DispDecMin()

GUI_DispSDec()
Description
Displays a value in decimal form (with sign) with a specified number of characters at
the current text position, in the current window using the current font.

Parameter Meaning

v
Value to display.
Minimum: -2147483648 (= -2^31); maximum: 2147483647 (= 2^31 -1).

Len No. of digits to display (max. 10).

Shift No. of digits to show to right of decimal point.

Parameter Meaning

v
Value to display.
Minimum: -2147483648 (= -2^31); maximum: 2147483647 (= 2^31 -1).

MaxDigits
No. of digits to display, including leading spaces.
Maximum no. of digits displayed is 10 (excluding leading spaces).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

69
Prototype
void GUI_DispSDec(I32 v, U8 Len);

Add. information
Leading zeros are not suppressed.
This function is similar to GUI_DispDec, but a sign is always shown in front of the
value, even if the value is positive.

Related topics
GUI_DispDec(), GUI_DispDecAt(), GUI_DispDecMin(), GUI_DispDecSpace()

GUI_DispSDecShift()
Description
Displays a long value in decimal form (with sign) with a specified number of charac-
ters and with decimal point at the current text position, in the current window using
the current font.

Prototype
void GUI_DispSDecShift(I32 v, U8 Len, U8 Shift);

Add. information
A sign is always shown in front of the value.
Watch the maximum number of 9 characters (including sign and decimal point).

Example
void DemoDec(void) {
 long l = 12345;
 GUI_Clear();
 GUI_SetFont(&GUI_Font8x8);
 GUI_DispStringAt("GUI_DispDecShift:\n",0,0);
 GUI_DispSDecShift(l, 7, 3);
 GUI_SetFont(&GUI_Font6x8);
 GUI_DispStringAt("Press any key",0,GUI_VYSIZE-8);
 WaitKey();
}

Screen shot of above example

Parameter Meaning

v
Value to display.
Minimum: -2147483648 (= -2^31); maximum: 2147483647 (= 2^31 -1).

Len No. of digits to display (max. 10).

Parameter Meaning

v
Value to display.
Minimum: -2147483648 (= -2^31); maximum: 2147483647 (= 2^31 -1).

Len No. of digits to display (max. 10).

Shift No. of digits to show to right of decimal point.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

70 CHAPTER 6 Displaying Values
6.3 Displaying floating-point values

GUI_DispFloat()
Description
Displays a floating-point value with a specified number of characters at the current
text position in the current window using the current font.

Prototype
void GUI_DispFloat(float v, char Len);

Add. information
Leading zeros are suppressed. The decimal point counts as one character.
If the value is negative, a minus sign is shown.

Example
/* Shows all features for displaying floating point values */
void DemoFloat(void) {
 float f = 123.45678;
 GUI_Clear()
 GUI_SetFont(&GUI_Font8x8);
 GUI_DispStringAt("GUI_DispFloat:\n",0,0);
 GUI_DispFloat (f,9);
 GUI_GotoX(100);
 GUI_DispFloat (-f,9);
 GUI_DispStringAt("GUI_DispFloatFix:\n",0,20);
 GUI_DispFloatFix (f,9,2);
 GUI_GotoX(100);
 GUI_DispFloatFix (-f,9,2);
 GUI_DispStringAt("GUI_DispSFloatFix:\n",0,40);
 GUI_DispSFloatFix (f,9,2);
 GUI_GotoX(100);
 GUI_DispSFloatFix (-f,9,2);
 GUI_DispStringAt("GUI_DispFloatMin:\n",0,60);
 GUI_DispFloatMin (f,3);
 GUI_GotoX(100);
 GUI_DispFloatMin (-f,3);
 GUI_DispStringAt("GUI_DispSFloatMin:\n",0,80);
 GUI_DispSFloatMin (f,3);
 GUI_GotoX(100);
 GUI_DispSFloatMin (-f,3);
 GUI_SetFont(&GUI_Font6x8);
 GUI_DispStringAt("Press any key",0,GUI_VYSIZE-8);
 WaitKey();
}

Parameter Meaning

v
Value to display.
Minimum 1.2 E-38; maximum 3.4 E38.

Len No. of digits to display (max. 10).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

71
Screen shot of above example

GUI_DispFloatFix()
Description
Displays a floating-point value with specified number of total characters and a speci-
fied number of characters to the right of the decimal point, at the current text posi-
tion in the current window using the current font.

Prototype
void GUI_DispFloatFix (float v, char Len, char Decs);

Add. information
Leading zeros are not suppressed.
If the value is negative, a minus sign is shown.

GUI_DispFloatMin()
Description
Displays a floating-point value with a minimum number of decimals to the right of the
decimal point, at the current text position in the current window using the current
font.

Prototype
void GUI_DispFloatMin(float f, char Fract);

Add. information
Leading zeros are suppressed.
If the value is negative, a minus sign is shown.
The length need not be specified; the minimum length will automatically be used. If
values have to be aligned but differ in the number of digits, this function is not a
good choice. Try one of the functions that specify the number of digits.

Parameter Meaning

v
Value to display.
Minimum 1.2 E-38; maximum 3.4 E38.

Len No. of digits to display (max. 10).

Decs No. of digits to show to right of decimal point.

Parameter Meaning

v
Value to display.
Minimum 1.2 E-38; maximum 3.4 E38.

Fract Minimum no. of characters to display.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 6 Displaying Values
GUI_DispSFloatFix()

Description
Displays a floating-point value (with sign) with a specified number of total characters
and a specified number of characters to the right of the decimal point, in the current
window using the current font.

Prototype
void GUI_DispSFloatFix(float v, char Len, char Decs);

Add. information
Leading zeros are not suppressed.
A sign is always shown in front of the value.

GUI_DispSFloatMin()

Description
Displays a floating-point value (with sign) with a minimum number of decimals to the
right of the decimal point, at the current text position in the current window using
the current font.

Prototype
void GUI_DispSFloatMin(float f, char Fract);

Add. information
Leading zeros are suppressed.
A sign is always shown in front of the value.
The length need not be specified; the minimum length will automatically be used. If
values have to be aligned but differ in the number of digits, this function is not a
good choice. Try one of the functions that specify the number of digits.

6.4 Displaying binary values

GUI_DispBin()
Description
Displays a value in binary form at the current text position in the current window
using the current font.

Prototype
void GUI_DispBin(U32 v, U8 Len);

Parameter Meaning

v
Value to display.
Minimum 1.2 E-38; maximum 3.4 E38.

Len No. of digits to display (max. 10).

Decs No. of digits to show to right of decimal point.

Parameter Meaning

v
Value to display.
Minimum 1.2 E-38; maximum 3.4 E38.

Fract Minimum no. of digits to display.

Parameter Meaning

v Value to display, 32-bit.

Len No. of digits to display (including leading zeros).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

73
Add. information
As with decimal and hexadecimal values, the least significant bit is rightmost.

Example
//
// Show binary value 7, result: 000111
//
 U32 Input = 0x7;
 GUI_DispBin(Input, 6);

Related topics
GUI_DispBinAt()

GUI_DispBinAt()
Description
Displays a value in binary form at a specified position in the current window using the
current font.

Prototype
void DispBinAt(U32 v, I16P y, I16P x, U8 Len);

Add. information
As with decimal and hexadecimal values, the least significant bit is rightmost.

Example
//
// Show binary input status
//
 GUI_DispBinAt(Input, 0,0, 8);

Related topics
GUI_DispBin(), GUI_DispHex()

6.5 Displaying hexadecimal values

GUI_DispHex()
Description
Displays a value in hexadecimal form at the current text position in the current win-
dow using the current font.

Prototype
void GUI_DispHex(U32 v, U8 Len);

Add. information
As with decimal and binary values, the least significant bit is rightmost.

Parameter Meaning

v Value to display, 16-bit.

x X-position to write to in pixels of the client window.

y Y-position to write to in pixels of the client window.

Len No. of digits to display (including leading zeroes).

Parameter Meaning

v Value to display, 16-bit.

Len No. of digits to display.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER 6 Displaying Values
Example

/* Show value of AD-converter */

GUI_DispHex(Input, 4);

Related topics
GUI_DispDec(), GUI_DispBin(), GUI_DispHexAt()

GUI_DispHexAt()
Description
Displays a value in hexadecimal form at a specified position in the current window
using the current font.

Prototype
void GUI_DispHexAt(U32 v, I16P x, I16P y, U8 Len);

Add. information
As with decimal and binary values, the least significant bit is rightmost.

Example
//
// Show value of AD-converter at specified position
//
GUI_DispHexAt(Input, 0, 0, 4);

Related topics
GUI_DispDec(), GUI_DispBin(), GUI_DispHex()

6.6 Version of emWin

GUI_GetVersionString()
Description
Returns a string containing the current version of emWin.

Prototype
const char * GUI_GetVersionString(void);

Example
//
// Displays the current version at the current cursor position
//
GUI_DispString(GUI_GetVersionString());

Parameter Meaning

v Value to display, 16-bit.

x X-position to write to in pixels of the client window.

y Y-position to write to in pixels of the client window.

Len No. of digits to display.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

75
Chapter 7

2-D Graphic Library
emWin contains a complete 2-D graphic library which should be sufficient for most
applications. The routines supplied with emWin can be used with or without clipping
and are based on fast and efficient algorithms. Currently, only the DrawArc() func-
tion requires floating-point calculations.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 7 2-D Graphic Library
7.1 Graphic API
The table below lists the available graphic-related routines in alphabetical order
within their respective categories. Detailed descriptions can be found in the sections
that follow.

Routine Explanation

Drawing modes
GUI_GetDrawMode() Returns the current drawing mode.

GUI_SetDrawMode() Sets the drawing mode.

Pen size
GUI_GetPenSize() Returns the current pen size in pixels.

GUI_SetPenSize() Sets the pen size in pixels.

Query current client rectangle
GUI_GetClientRect() Returns the current available drawing area.

Basic drawing routines
GUI_ClearRect() Fills a rectangular area with the background color.

GUI_DrawGradientV() Draws a rectangle filled with a vertical color gradient.

GUI_DrawGradientH() Draws a rectangle filled with a horizontal color gradient.

GUI_DrawPixel() Draws a single pixel.

GUI_DrawPoint() Draws a point.

GUI_DrawRect() Draws a rectangle.

GUI_DrawRectEx() Draws a rectangle.

GUI_DrawRoundedRect() Draws a rectangle with rounded corners.

GUI_FillRect() Draws a filled rectangle.

GUI_FillRectEx() Draws a filled rectangle.

GUI_FillRoundedRect() Draws a filled rectangle with rounded corners.

GUI_InvertRect() Invert a rectangular area.

Drawing bitmaps
GUI_DrawBitmap() Draws a bitmap.

GUI_DrawBitmapEx() Draws a scaled bitmap.

GUI_DrawBitmapExp() Draws a bitmap using additional parameters.

GUI_DrawBitmapMag() Draws a magnified bitmap.

Drawing lines
GUI_DrawHLine() Draws a horizontal line.

GUI_DrawLine()
Draws a line from a specified startpoint to a specified endpoint
(absolute coordinates).

GUI_DrawLineRel()
Draws a line from the current position to an endpoint specified by X-
and Y-distances (relative coordinates).

GUI_DrawLineTo() Draws a line from the current position to a specified endpoint.

GUI_DrawPolyLine() Draws a polyline.

GUI_DrawVLine() Draws a vertical line.

GUI_GetLineStyle() Returns the current line style.

GUI_MoveRel() Moves the line pointer relative to its current position.

GUI_MoveTo() Moves the line pointer to the given position.

GUI_SetLineStyle() Sets the current line style.

Drawing polygons
GUI_DrawPolygon() Draws the outline of a polygon.

GUI_EnlargePolygon() Enlarges a polygon.

GUI_FillPolygon() Draws a filled polygon.

GUI_MagnifyPolygon() Magnifys a polygon.

GUI_RotatePolygon() Rotates a polygon by a specified angle.

Drawing circles
GUI_DrawCircle() Draws the outline of a a circle.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

77
7.2 Drawing modes
emWin can draw in NORMAL mode or in XOR mode. The default is NORMAL mode, in
which the content of the display is overdrawn by the graphic. In XOR mode, the con-
tent of the display is inverted when it is overdrawn.

Restrictions associated with GUI_DRAWMODE_XOR
� XOR mode is only useful when using two displayed colors inside the active win-

dow or screen.
� Some drawing functions of emWin do not work precisely with this drawing mode.

Generally, this mode works only with a pen size of one pixel. That means before
using functions like GUI_DrawLine(), GUI_DrawCircle(), GUI_DrawRect() and
so on, you must make sure that the pen size is set to 1 when you are working in
XOR mode.

� When drawing bitmaps with a color depth greater than 1 bit per pixel (bpp) this
drawing mode takes no effect.

� When using drawing functions such as GUI_DrawPolyLine() or multiple calls of
GUI_DrawLineTo(), the fulcrums are inverted twice. The result is that these pix-
els remain in the background color.

GUI_GetDrawMode()
Description
Returns the current drawing mode.

Prototype
GUI_DRAWMODE GUI_GetDrawMode(void);

Return value
The currently selected drawing mode.

Add. information
For details about drawing modes please refer to the function GUI_SetDrawMode().

GUI_SetDrawMode()
Description
Selects the specified drawing mode.

GUI_FillCircle() Draws a filled circle.

Drawing ellipses
GUI_DrawEllipse() Draws the outline of an ellipse.

GUI_FillEllipse() Draws a filled ellipse.

Drawing arcs
GUI_DrawArc() Draws an arc.

Drawing a graph
GUI_DrawGraph() Draws a graph.

Drawing a pie chart
GUI_DrawPie() Draws a circle sector.

Saving and restoring the GUI-context
GUI_RestoreContext() Restores the GUI-context.

GUI_SaveContext() Saves the GUI-context.

Clipping
GUI_SetClipRect() Sets the rectangle used for clipping.

Routine Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 7 2-D Graphic Library
Prototype
GUI_DRAWMODE GUI_SetDrawMode(GUI_DRAWMODE mode);

Return value
The selected drawing mode.

Add. information
In addition to setting the drawing mode, this routine may also be used to restore a
drawing mode that has previously been changed.
If using colors, an inverted pixel is calculated as follows:
New pixel color = number of colors - actual pixel color - 1.

Example
//
// Showing two circles, the second one XOR-combined with the first:
//
GUI_Clear();
GUI_SetDrawMode(GUI_DRAWMODE_NORMAL);
GUI_FillCircle(120, 64, 40);
GUI_SetDrawMode(GUI_DRAWMODE_XOR);
GUI_FillCircle(140, 84, 40);

Screen shot of above example

7.3 Query current client rectangle

GUI_GetClientRect()
Description
The current client rectangle depends on using the window manager or not. If using
the window manager the function uses WM_GetClientRect to retrieve the client rect-
angle. If not using the window manager the client rectangle corresponds to the com-
plete LCD display.

Prototype
void GUI_GetClientRect(GUI_RECT* pRect);

Parameter Meaning

mode
Drawing mode to set. May be a value returned by any routine which sets the drawing
mode or one of the constants below.

Permitted values for parameter mode

GUI_DM_NORMAL Default: Draws points, lines, areas, bitmaps.

GUI_DM_XOR
Inverts points, lines, areas when overwriting the
color of another object on the display.

Parameter Meaning

pRect Pointer to GUI_RECT-structure to store result.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

79
7.4 Pen size
The pen size determines the thickness of vector drawing operations line
GUI_DrawLine(), GUI_DrawCircle() and so on. Please note that the pen size takes
not effect on all drawing functions.

GUI_GetPenSize()
Description
Returns the current pen size.

Prototype
U8 GUI_GetPenSize(void);

GUI_SetPenSize()
Description
Sets the pen size to be used for further drawing operations.

Prototype
U8 GUI_SetPenSize(U8 PenSize);

Return value
Previous pen size.

Add information
The pen size should be >= 1.

7.5 Basic drawing routines
The basic drawing routines allow drawing of individual points, horizontal and vertical
lines and shapes at any position on the display. Any available drawing mode can be
used. Since these routines are called frequently in most applications, they are opti-
mized for speed as much as possible. For example, the horizontal and vertical line
functions do not require the use of single-dot routines.

GUI_ClearRect()
Description
Clears a rectangular area at a specified position in the current window by filling it
with the background color.

Prototype
void GUI_ClearRect(int x0, int y0, int x1, int y1);

Related topics
GUI_InvertRect(), GUI_FillRect()

Parameter Meaning

PenSize Pen size in pixels to be used.

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 7 2-D Graphic Library
GUI_DrawGradientH()
Description
Draws a rectangle filled with a horizontal color gradient.

Prototype
void GUI_DrawGradientH(int x0, int y0, int x1, int y1,
 GUI_COLOR Color0, GUI_COLOR Color1);

Example
GUI_DrawGradientH(0, 0, 99, 99, 0x0000FF, 0x00FFFF);

Screenshot of above example

GUI_DrawGradientV()
Description
Draws a rectangle filled with a vertical color gradient.

Prototype
void GUI_DrawGradientV(int x0, int y0, int x1, int y1,
 GUI_COLOR Color0, GUI_COLOR Color1);

Example
GUI_DrawGradientV(0, 0, 99, 99, 0x0000FF, 0x00FFFF);

Screenshot of above example

GUI_DrawPixel()
Description
Draws a pixel at a specified position in the current window.

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

Color0 Color to be drawn on the leftmost side of the rectangle.

Color1 Color to be drawn on the rightmost side of the rectangle.

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

Color0 Color to be drawn on the leftmost side of the rectangle.

Color1 Color to be drawn on the rightmost side of the rectangle.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

81
Prototype
void GUI_DrawPixel(int x, int y);

Related topics
GUI_DrawPoint()

GUI_DrawPoint()
Description
Draws a point with the current pen size at a specified position in the current window.

Prototype
void GUI_DrawPoint(int x, int y);

Related topics
GUI_DrawPixel()

GUI_DrawRect()
Description
Draws a rectangle at a specified position in the current window.

Prototype
void GUI_DrawRect(int x0, int y0, int x1, int y1);

GUI_DrawRectEx()
Description
Draws a rectangle at a specified position in the current window.

Prototype
void GUI_DrawRectEx(const GUI_RECT *pRect);

GUI_DrawRoundedRect()
Description
Draws a rectangle at a specified position in the current window with rounded corners.

Parameter Meaning

x X-position of pixel.

y Y-position of pixel.

Parameter Meaning

x X-position of point.

y Y-position of point.

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

Parameter Meaning

pRect Pointer to a GUI_RECT-structure containing the coordinates of the rectangle
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER 7 2-D Graphic Library
Prototype
void GUI_DrawRoundedRect(int x0, int y0, int x1, int y1, int r);

GUI_FillRect()
Description
Draws a filled rectangular area at a specified position in the current window.

Prototype
void GUI_FillRect(int x0, int y0, int x1, int y1);

Add. information
Uses the current drawing mode, which normally means all pixels inside the rectangle
are set.

Related topics
GUI_InvertRect(), GUI_ClearRect()

GUI_FillRectEx()
Description
Draws a filled rectangle at a specified position in the current window.

Prototype
void GUI_FillRectEx (const GUI_RECT* pRect);

GUI_FillRoundedRect()
Description
Draws a filled rectangle at a specified position in the current window with rounded
corners.

Prototype
void GUI_FillRoundedRect(int x0, int y0, int x1, int y1, int r);

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

r Radius to be used for the rounded corners.

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

Parameter Meaning

pRect Pointer to a GUI_RECT-structure containing the coordinates of the rectangle

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

83
GUI_InvertRect()
Description
Draws an inverted rectangular area at a specified position in the current window.

Prototype
void GUI_InvertRect(int x0, int y0, int x1, int y1);

Related topics
GUI_FillRect(), GUI_ClearRect()

7.6 Drawing bitmaps
Generally emWin is able to display any bitmap image at any display position. On 16
bit CPUs (sizeof(int) == 2), the size of one bitmap per default is limited to 64Kb. If
larger bitmaps should be displayed with a 16 bit CPU please refer to chapter "High-
Level Configuration\Available GUI configuration macros".

GUI_DrawBitmap()
Description
Draws a bitmap image at a specified position in the current window.

Prototype
void GUI_DrawBitmap(const GUI_BITMAP* pBM, int x, int y);

Add. information
The picture data is interpreted as bitstream starting with the most significant bit
(msb) of the first byte.
A new line always starts at an even byte address, as the nth line of the bitmap starts
at offset n*BytesPerLine. The bitmap can be shown at any point in the client area.
Usually, the bitmap converter is used to generate bitmaps. For more information,
please refer to Chapter 9: "Bitmap Converter".

Example
extern const GUI_BITMAP bmSeggerLogoBlue; /* declare external Bitmap */

void main() {
 GUI_Init();
 GUI_DrawBitmap(&bmSeggerLogoBlue,45,20);
}

x1 Lower right X-position.

y1 Lower right Y-position.

r Radius to be used for the rounded corners.

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

Parameter Meaning

pBM Pointer to the bitmap to display.

x X-position of the upper left corner of the bitmap in the display.

y Y-position of the upper left corner of the bitmap in the display.

Parameter Meaning
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER 7 2-D Graphic Library
Screen shot of above example

GUI_DrawBitmapExp()
Description
Same function as GUI_DrawBitmap(), but with additional parameters.

Prototype
void GUI_DrawBitmapExp(int x0, int y0,
 int XSize, int YSize,
 int XMul, int YMul,
 int BitsPerPixel,
 int BytesPerLine,
 const U8* pData,
 const GUI_LOGPALETTE* pPal);

GUI_DrawBitmapEx()
Description
This routine makes it possible to scale and/or to mirror a bitmap on the display.

Prototype
void GUI_DrawBitmapEx(const GUI_BITMAP* pBitmap,
 int x0, int y0,
 int xCenter, int yCenter,
 int xMag, int yMag);

Parameter Meaning

x0 X-position of the upper left corner of the bitmap in the display.

y0 Y-position of the upper left corner of the bitmap in the display.

Xsize Number of pixels in horizontal direction. Valid range: 1... 255.

Ysize Number of pixels in vertical direction. Valid range: 1... 255.

XMUL Scale factor of X-direction.

YMul Scale factor of Y-direction.

BitsPerPixel Number of bits per pixel.

BytesPerLine Number of bytes per line of the image.

pData Pointer to the actual image, the data that defines what the bitmap looks like.

pPal Pointer to a GUI_LOGPALETTE structure.

Parameter Meaning

pBM Pointer to the bitmap to display.

x0 X-position of the anker point in the display.

y0 Y-position of the anker point in the display.

xCenter X-positiom of the anker point in the bitmap.

yCenter Y-positiom of the anker point in the bitmap.

xMag Scale factor of X-direction.

yMag Scale factor of Y-direction.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

85
Add. information
A negative value of the xMag-parameter would mirror the bitmap in the X-axis and a
negative value of the yMag-parameter would mirror the bitmap in the Y-axis. The unit
of xMag- and yMag are thousandth. The position given by the parameter xCenter and
yCenter specifies the pixel of the bitmap which should be displayed at the display at
position x0/y0 independent of scaling or mirroring.
This function can not be used to draw RLE-compressed bitmaps.

GUI_DrawBitmapMag()
Description
This routine makes it possible to magnify a bitmap on the display.

Prototype
void GUI_DrawBitmapMag(const GUI_BITMAP* pBM,
 int x0, int y0,
 int XMul, int YMul);

GUI_DrawStreamedBitmap()
Description
Draws a bitmap from a data bitmap data stream.

Prototype
void GUI_DrawStreamedBitmap(const GUI_BITMAP_STREAM* pBMH, int x, int y);

Add. information
You can use the bitmap converter (Chapter 9) to create bitmap data streams. The
format of these streams is not the same as the format of a .bmp file.

7.7 Drawing lines
The most frequently used drawing routines are those that draw a line from one point
to another.

GUI_DrawHLine()
Description
Draws a horizontal line one pixel thick from a specified starting point to a specified
endpoint in the current window.

Parameter Meaning

pBM Pointer to the bitmap to display.

x0 X-position of the upper left corner of the bitmap in the display.

y0 Y-position of the upper left corner of the bitmap in the display.

XMul Magnification factor of X-direction.

YMul Magnification factor of Y-direction.

Parameter Meaning

pBMH Pointer to the data stream.

x X-position of the upper left corner of the bitmap in the display.

y Y-position of the upper left corner of the bitmap in the display.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

86 CHAPTER 7 2-D Graphic Library
Prototype
void GUI_DrawHLine(int y, int x0, int x1);

Add. information
If x1 < x0, nothing will be displayed.
With most LCD controllers, this routine is executed very quickly because multiple pix-
els can be set at once and no calculations are needed. If it is clear that horizontal
lines are to be drawn, this routine executes faster than the GUI_DrawLine() routine.

GUI_DrawLine()
Description
Draws a line from a specified starting point to a specified endpoint in the current win-
dow (absolute coordinates).

Prototype
void GUI_DrawLine(int x0, int y0, int x1, int y1);

Add. information
If part of the line is not visible because it is not in the current window or because
part of the current window is not visible, this is due to clipping.

GUI_DrawLineRel()
Description
Draws a line from the current (X,Y) position to an endpoint specified by X-distance
and Y-distance in the current window (relative coordinates).

Prototype
void GUI_DrawLineRel(int dx, int dy);

GUI_DrawLineTo()
Description
Draws a line from the current (X,Y) position to an endpoint specified by X- and Y-
coordinates in the current window.

Parameter Meaning

y Y-position.

x0 X-starting position.

x1 X-end position.

Parameter Meaning

x0 X-starting position.

y0 Y-starting position.

x1 X-end position.

y1 Y-end position.

Parameter Meaning

dx Distance in X-direction to end of line to draw.

dy Distance in Y-direction end of line to draw.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

87
Prototype
void GUI_DrawLineTo(int x, int y);

GUI_DrawPolyLine()
Description
Connects a predefined list of points with lines in the current window.

Prototype
void GUI_DrawPolyLine(const GUI_POINT* pPoint, int NumPoints, int x, int y);

Add. information
The starting point and endpoint of the polyline need not be identical.

GUI_DrawVLine()
Description
Draws a vertical line one pixel thick from a specified starting point to a specified end-
point in the current window.

Prototype
void GUI_DrawVLine(int x, int y0, int y1);

Add. information
If y1 < y0, nothing will be displayed.
With most LCD controllers, this routine is executed very quickly because multiple pix-
els can be set at once and no calculations are needed. If it is clear that vertical lines
are to be drawn, this routine executes faster than the GUI_DrawLine() routine.

GUI_GetLineStyle()
Description
Returns the current line style used by the function GUI_DrawLine.

Prototype
U8 GUI_GetLineStyle (void);

Return value
Current line style used by the function GUI_DrawLine.

Parameter Meaning

x X-end position.

y Y-end position.

Parameter Meaning

pPoint Pointer to the polyline to display.

NumPoints Number of points specified in the list of points.

x X-position of origin.

y Y-position of origin.

Parameter Meaning

x X-position.

y0 Y-starting position.

y1 Y-end position.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 7 2-D Graphic Library
GUI_MoveRel()
Description
Moves the current line pointer relative to its current position.

Prototype
void GUI_MoveRel(int dx, int dy);

Related topics
GUI_DrawLineTo(), GUI_MoveTo()

GUI_MoveTo()
Description
Moves the current line pointer to the given position.

Prototype
void GUI_MoveTo(int x, int y);

GUI_SetLineStyle()
Description
Sets the current line style used by the function GUI_DrawLine.

Prototype
U8 GUI_SetLineStyle(U8 LineStyle);

Return value
Previous line style used by the function GUI_DrawLine.

Add. information
This function sets only the line style used by GUI_DrawLine. The style will be used
only with a pen size of 1.

Parameter Meaning

dx Distance to move in X.

dy Distance to move in Y.

Parameter Meaning

x New position in X.

y New position in Y.

Parameter Meaning

LineStyle New line style to be used (see table below).

Permitted values for parameter LineStyle

GUI_LS_SOLID Lines would be drawn solid (default).

GUI_LS_DASH Lines would be drawn dashed.

GUI_LS_DOT Lines would be drawn dotted.

GUI_LS_DASHDOT
Lines would be drawn alternating with dashes and
dots.

GUI_LS_DASHDOTDOT
Lines would be drawn alternating with dashes and
double dots.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

89
7.8 Drawing polygons
The polygon drawing routines can be helpful when drawing vectorized symbols.

GUI_DrawPolygon()
Description
Draws the outline of a polygon defined by a list of points in the current window.

Prototype
void GUI_DrawPolygon(const GUI_POINT* pPoint, int NumPoints, int x, int y);

Add. information
The polyline drawn is automatically closed by connecting the endpoint to the starting
point.

GUI_EnlargePolygon()
Description
Enlarges a polygon on all sides by a specified length in pixels.

Prototype
void GUI_EnlargePolygon(GUI_POINT* pDest,
 const GUI_POINT* pSrc,
 int NumPoints, int Len);

Add. information
Make sure the destination array of points is equal to or larger than the source array.

Example
#define countof(Array) (sizeof(Array) / sizeof(Array[0]))

const GUI_POINT aPoints[] = {
 { 0, 20},
 { 40, 20},
 { 20, 0}
};

GUI_POINT aEnlargedPoints[countof(aPoints)];

void Sample(void) {
 int i;
 GUI_Clear();
 GUI_SetDrawMode(GUI_DM_XOR);
 GUI_FillPolygon(aPoints, countof(aPoints), 140, 110);
 for (i = 1; i < 10; i++) {
 GUI_EnlargePolygon(aEnlargedPoints, aPoints, countof(aPoints), i * 5);
 GUI_FillPolygon(aEnlargedPoints, countof(aPoints), 140, 110);
 }
}

Parameter Meaning

pPoint Pointer to the polygon to display.

NumPoints Number of points specified in the list of points.

x X-position of origin.

y Y-position of origin.

Parameter Meaning

pDest Pointer to the destination polygon.

pSrc Pointer to the source polygon.

NumPoints Number of points specified in the list of points.

Len Length (in pixels) by which to enlarge the polygon.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

90 CHAPTER 7 2-D Graphic Library
Screen shot of above example

GUI_FillPolygon()
Description
Draws a filled polygon defined by a list of points in the current window.

Prototype
void GUI_FillPolygon(const GUI_POINT* pPoint, int NumPoints, int x, int y);

Add. information
The polyline drawn is automatically closed by connecting the endpoint to the starting
point. It is not required that the endpoint touches the outline of the polygon.
Rendering a polygon is done by drawing one or more horizontal lines for each y-posi-
tion of the polygon. Per default the maximum number of points used to draw the hor-
izontal lines for one y-position is 12 (which means 6 lines per y-position). If this
value needs to be increased, the macro GUI_FP_MAXCOUNT can be used to set the
maximum number of points.

Example
#define GUI_FP_MAXCOUNT 50

GUI_MagnifyPolygon()
Description
Magnifies a polygon by a specified factor.

Prototype
void GUI_MagnifyPolygon(GUI_POINT* pDest,
 const GUI_POINT* pSrc,
 int NumPoints, int Mag);

Add. information
Make sure the destination array of points is equal to or larger than the source array.

Parameter Meaning

pPoint Pointer to the polygon to display and to fill.

NumPoints Number of points specified in the list of points.

x X-position of origin.

y Y-position of origin.

Parameter Meaning

pDest Pointer to the destination polygon.

pSrc Pointer to the source polygon.

NumPoints Number of points specified in the list of points.

Mag Factor used to magnify the polygon.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

91
Note the difference between enlarging and magnifying a polygon. Whereas setting
the parameter Len to 1 will enlarge the polygon by one pixel on all sides, setting the
parameter Mag to 1 will have no effect.

Example
#define countof(Array) (sizeof(Array) / sizeof(Array[0]))

const GUI_POINT aPoints[] = {
 { 0, 20},
 { 40, 20},
 { 20, 0}
};

GUI_POINT aMagnifiedPoints[countof(aPoints)];

void Sample(void) {
 int Mag, y = 0, Count = 4;
 GUI_Clear();
 GUI_SetColor(GUI_GREEN);
 for (Mag = 1; Mag <= 4; Mag *= 2, Count /= 2) {
 int i, x = 0;
 GUI_MagnifyPolygon(aMagnifiedPoints, aPoints, countof(aPoints), Mag);
 for (i = Count; i > 0; i--, x += 40 * Mag) {
 GUI_FillPolygon(aMagnifiedPoints, countof(aPoints), x, y);
 }
 y += 20 * Mag;
 }
}

Screen shot of above example

GUI_RotatePolygon()
Description
Rotates a polygon by a specified angle.

Prototype
void GUI_RotatePolygon(GUI_POINT* pDest,
 const GUI_POINT* pSrc,
 int NumPoints,
 float Angle);

Add. information
Make sure the destination array of points is equal to or larger than the source array.

Parameter Meaning

pDest Pointer to the destination polygon.

pSrc Pointer to the source polygon.

NumPoints Number of points specified in the list of points.

Angle Angle in radian used to rotate the polygon.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 7 2-D Graphic Library
Example
The following example shows how to draw a polygon. It is available as
2DGL_DrawPolygon.c in the samples shipped with emWin.

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* *
* emWin sample code *
* *
**

--
File : 2DGL_DrawPolygon.c
Purpose : Example for drawing a polygon
--
*/

#include "gui.h"

/***
*
* The points of the arrow
*
**
*/

static const GUI_POINT aPointArrow[] = {
 { 0, -5},
 {-40, -35},
 {-10, -25},
 {-10, -85},
 { 10, -85},
 { 10, -25},
 { 40, -35},
};

/***
*
* Draws a polygon
*
**
*/

static void DrawPolygon(void) {
 int Cnt =0;
 GUI_SetBkColor(GUI_WHITE);
 GUI_Clear();
 GUI_SetFont(&GUI_Font8x16);
 GUI_SetColor(0x0);
 GUI_DispStringAt("Polygons of arbitrary shape ", 0, 0);
 GUI_DispStringAt("in any color", 120, 20);
 GUI_SetColor(GUI_BLUE);
 /* Draw filled polygon */
 GUI_FillPolygon (&aPointArrow[0],7,100,100);
}

/***
*
* main
*
**
*/

void main(void) {
 GUI_Init();
 DrawPolygon();
 while(1)
 GUI_Delay(100);
}

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

93
Screen shot of above example

7.9 Drawing circles

GUI_DrawCircle()
Description
Draws the outline of a circle of specified dimensions, at a specified position in the
current window.

Prototype
void GUI_DrawCircle(int x0, int y0, int r);

Add. information
This routine cannot handle a radius in excess of 180 because it uses integer calcula-
tions that would otherwise produce an overflow. However, for most embedded appli-
cations this is not a problem since a circle with diameter 360 is larger than the
display anyhow.

Example
// Draw concentric circles
void ShowCircles(void) {
 int i;
 for (i=10; i<50; i++)
 GUI_DrawCircle(120,60,i);
}

Screen shot of above example

GUI_FillCircle()
Description
Draws a filled circle of specified dimensions at a specified position in the current win-
dow.

Parameter Meaning

x0 X-position of the center of the circle in pixels of the client window.

y0 Y-position of the center of the circle in pixels of the client window.

r
Radius of the circle (half the diameter).
Minimum: 0 (will result in a point); maximum: 180.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER 7 2-D Graphic Library
Prototype
void GUI_FillCircle(int x0, int y0, int r);

Add. information
This routine cannot handle a radius in excess of 180.

Example
GUI_FillCircle(120,60,50);

Screen shot of above example

7.10 Drawing ellipses

GUI_DrawEllipse()
Description
Draws the outline of an ellipse of specified dimensions, at a specified position in the
current window.

Prototype
void GUI_DrawEllipse (int x0, int y0, int rx, int ry);

Add. information
This routine cannot handle rx/ry parameters in excess of 180 because it uses integer
calculations that would otherwise produce an overflow.

Example
See the GUI_FillEllipse() example.

GUI_FillEllipse()
Description
Draws a filled ellipse of specified dimensions at a specified position in the current
window.

Parameter Meaning

x0 X-position of the center of the circle in pixels of the client window.

y0 Y-position of the center of the circle in pixels of the client window.

r
Radius of the circle (half the diameter).
Minimum: 0 (will result in a point); maximum: 180.

Parameter Meaning

x0 X-position of the center of the circle in pixels of the client window.

y0 Y-position of the center of the circle in pixels of the client window.

rx
X-radius of the ellipse (half the diameter).
Minimum: 0; maximum: 180.

ry
Y-radius of the ellipse (half the diameter).
Minimum: 0; maximum: 180.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

95
Prototype
void GUI_FillEllipse(int x0, int y0, int rx, int ry);

Add. information
This routine cannot handle a rx/ry parameters in excess of 180.

Example
/*
 Demo ellipses
*/
GUI_SetColor(0xff);
GUI_FillEllipse(100, 180, 50, 70);
GUI_SetColor(0x0);
GUI_DrawEllipse(100, 180, 50, 70);
GUI_SetColor(0x000000);
GUI_FillEllipse(100, 180, 10, 50);

Screen shot of above example

7.11 Drawing arcs

GUI_DrawArc()
Description
Draws an arc of specified dimensions at a specified position in the current window. An
arc is a section of the outline of a circle.

Prototype
void GL_DrawArc (int xCenter, int yCenter, int rx, int ry, int a0, int a1);

Parameter Meaning

x0 X-position of the center of the circle in pixels of the client window.

y0 Y-position of the center of the circle in pixels of the client window.

rx
X-radius of the ellipse (half the diameter).
Minimum: 0; maximum: 180.

ry
Y-radius of the ellipse (half the diameter).
Minimum: 0; maximum: 180.

Parameter Meaning

xCenter Horizontal position of the center in pixels of the client window.

yCenter Vertical position of the center in pixels of the client window.

rx X-radius (pixels).

ry Y-radius (pixels).

a0 Starting angle (degrees).

a1 Ending angle (degrees).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER 7 2-D Graphic Library
Limitations
Currently the ry parameter is not used. The rx parameter is used instead.

Add. information
GUI_DrawArc() uses the floating-point library. It cannot handle rx/ry parameters in
excess of 180 because it uses integer calculations that would otherwise produce an
overflow.

Example
void DrawArcScale(void) {
 int x0 = 160;
 int y0 = 180;
 int i;
 char ac[4];
 GUI_SetBkColor(GUI_WHITE);
 GUI_Clear();
 GUI_SetPenSize(5);
 GUI_SetTextMode(GUI_TM_TRANS);
 GUI_SetFont(&GUI_FontComic18B_ASCII);
 GUI_SetColor(GUI_BLACK);
 GUI_DrawArc(x0,y0,150, 150,-30, 210);
 GUI_Delay(1000);
 for (i=0; i<= 23; i++) {
 float a = (-30+i*10)*3.1415926/180;
 int x = -141*cos(a)+x0;
 int y = -141*sin(a)+y0;
 if (i%2 == 0)
 GUI_SetPenSize(5);
 else
 GUI_SetPenSize(4);
 GUI_DrawPoint(x,y);
 if (i%2 == 0) {
 x = -123*cos(a)+x0;
 y = -130*sin(a)+y0;
 sprintf(ac, "%d", 10*i);
 GUI_SetTextAlign(GUI_TA_VCENTER);
 GUI_DispStringHCenterAt(ac,x,y);
 }
 }
}

Screen shot of above example

7.12 Drawing graphs

GUI_DrawGraph()
Description
Draws a graph at once.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

97
Prototype
void GUI_DrawGraph(I16 *paY, int NumPoints, int x0, int y0);

Add. information
The function first sets the line-cursor to the position specified with x0, y0 and the
first Y-value of the given array. Then it starts drawing lines to x0 + 1, y0 + *(paY +
1), x0 + 2, y0 + *(paY + 2) and so on.

Example
#include "GUI.h"
#include <stdlib.h>

I16 aY[100];

void MainTask(void) {
 int i;
 GUI_Init();
 for (i = 0; i < GUI_COUNTOF(aY); i++) {
 aY[i] = rand() % 50;
 }
 GUI_DrawGraph(aY, GUI_COUNTOF(aY), 0, 0);
}

Screen shot of above example

7.13 Drawing pie charts

GUI_DrawPie()
Description
Draws a circle sector.

Prototype
void GUI_DrawPie(int x0, int y0, int r, int a0, int a1, int Type);

Example
int i, a0, a1;
const unsigned aValues[] = {100, 135, 190, 240, 340, 360};
const GUI_COLOR aColors[] = { GUI_BLUE, GUI_GREEN, GUI_RED,
 GUI_CYAN, GUI_MAGENTA, GUI_YELLOW };
for (i = 0; i < GUI_COUNTOF(aValues); i++) {

Parameter Meaning

paY Pointer to an array containing the Y-values of the graph.

NumPoints Number of Y-values to be displayed.

x0 Starting point in x.

y0 Starting point in y.

Parameter Meaning

x0 X-position of the center of the circle in pixels of the client window.

y0 Y-position of the center of the circle in pixels of the client window.

r Radius of the circle (half the diameter).

a0 Starting angle (degrees).

a1 End angle (degrees).

Type (reserved for future use, should be 0)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 7 2-D Graphic Library
 a0 = (i == 0) ? 0 : aValues[i - 1];
 a1 = aValues[i];
 GUI_SetColor(aColors[i]);
 GUI_DrawPie(100, 100, 50, a0, a1, 0);
}

Screen shot of above example

7.14 Saving and restoring the GUI-context

GUI_RestoreContext()
Description
The function restores the GUI-context.

Prototype
void GUI_RestoreContext(const GUI_CONTEXT* pContext);

Add. information
The GUI-context contains the current state of the GUI like the text cursor position, a
pointer to the current font and so on. Sometimes it could be usefull to save the cur-
rent state ant to restore it later. For this you can use these functions.

GUI_SaveContext()
Description
The function saves the current GUI-context. (See also GUI_RestoreContext)

Prototype
void GUI_SaveContext(GUI_CONTEXT* pContext);

7.15 Clipping

GUI_SetClipRect()
Description
Sets the clipping rectangle used for limiting the output.

Prototype
void GUI_SetClipRect(const GUI_RECT* pRect);

Parameter Meaning

pContext Pointer to a GUI_CONTEXT structure containing the new context.

Parameter Meaning

pContext Pointer to a GUI_CONTEXT structure for saving the current context.

Parameter Meaning

pRect
Pointer to the rectangle which should be used for clipping. A NULL pointer should be
used to restore the default value.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

99
Add. information
The clipping area is per default limited to the configured (virtual) display size.
Under some circumstances it can be usefull to use a smaller clipping rectangle, which
can be set using this function.
The rectangle referred to should remain unchanged until the function is called again
with a NULL pointer.

Sample
The following sample shows how to use the function:

GUI_RECT Rect = {10, 10, 100, 100};
GUI_SetClipRect(&Rect);
.
. /* Use the clipping area ... */
.
GUI_SetClipRect(NULL);
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER 7 2-D Graphic Library
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

101
Chapter 8

Fonts
This chapter describes the various methods of font support in emWin. The most com-
mon fonts are shipped with emWin as �C� font files. All of them contain the ASCII
character set and most of them also the characters of ISO 8859-1. In fact, you will
probably find that these fonts are fully sufficient for your application. For detailed
information on the individual fonts, please refer to the subchapter "Standard Fonts",
which describes all fonts included with emWin and shows all characters as they
appear on the display.
emWin is compiled for 8-bit characters, allowing for a maximum of 256 different
character codes out of which the first 32 are reserved as control characters. The
characters that are available depends on the selected font.
For accessing the full Unicode area of 65536 possible characters emWin supports
UTF8 decoding which is described in chapter 14 "Foreign Language Support".
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER 8 Fonts
8.1 Introduction
The first way of font support was the possibility to use �C� files with font definitions
containing bitmaps with 1bpp pixel information for each character. This kind of font
support was limited to use only the fonts which are compiled with the application.

8.2 Font types
Contrary to emWin, emWin 8051 does not support different font types. The only font
type supported is "Proportional bitmap".

Proportional bitmap fonts
Each character of a proportional bitmap font has the same height and its own width.
The pixel information is saved with 1bpp.

8.3 Font formats
The following explains the differences between the supported font formats, when to
use them and what is required to be able to use them.

8.3.1 ’C’ file format
This is the most common way of using fonts. When using fonts in form of �C� files, we
recommend compiling all available fonts and linking them as library modules or put-
ting all of the font object files in a library which you can link with your application.
This way you can be sure that only the fonts which are needed by your application
are actually linked. The font converter (described in a separate manual) may be used
to create additional fonts.

When to use
This format should be used if the fonts are known at compile time and if there is
enough addressable memory available for the font data.

Requirements
In order to be able to use a font �C� file in your application, the following require-
ments must be met:

� The font file is in a form compatible with emWin as "C" file, object file or library.
� The font file is linked with your application.
� The font declaration is contained in the application.

Format description
A font �C� file contains at first the pixel information of all characters included by the
font. It is followed by a character information table with size information about each
character. This table is followed by range information structures for each contiguous
area of characters contained in the font file, whereas each structure points to the
next one. Please note that this method can enlarge a font file a lot if using many sep-
arate characters. After the range information structures a GUI_FONT structure follows
with the main information like type, pixel size and so on of the font.

8.4 Declaring custom fonts
The most recommended way of declaring the prototypes of custom fonts is to put
them into an application defined header file. This should be included from each appli-
cation source file which uses these fonts. It could look like the following sample:

#include "GUI.h"

extern GUI_CONST_STORAGE GUI_FONT GUI_FontApp1;
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

103
extern GUI_CONST_STORAGE GUI_FONT GUI_FontApp2;

Please note that this kind of declaring prototypes does not work if the fonts should be
used with emWin configuration macros like BUTTON_FONT_DEFAULT or similar. In this
case the fonts need to be declared in the configuration file GUIConf.h. The declara-
tion in this case can look like the following sample:

typedef struct GUI_FONT GUI_FONT;

extern const GUI_FONT GUI_FontApp1;

#define BUTTON_FONT_DEFAULT &GUI_FontApp1
#define EDIT_FONT_DEFAULT &GUI_FontApp1

The typedef is required because the structure GUI_FONT has not been defined at the
early point where GUIConf.h is included by emWin.

8.5 Selection of a font
emWin offers different fonts, one of which is always selected. This selection can be
changed by calling the function GUI_SetFont() or one of the GUI_XXX_CreateFont()
functions, which select the font to use for all text output to follow for the current
task.
If no font has been selected by your application, the default font is used. This default
is configured in GUIConf.h and can be changed. You should make sure that the
default font is one that you are actually using in your application because the default
font will be linked with your application and will therefore use up ROM memory.

8.6 Font API
The table below lists the available font-related routines in alphabetical order within
their respective categories. Detailed descriptions can be found in the sections that
follow.

8.7 ’C’ file related font functions

GUI_SetFont()
Description
Sets the font to be used for text output.

Routine Explanation

’C’ file related font functions
GUI_SetFont() Sets the current font.

Common font-related functions

GUI_GetCharDistX()
Returns the width in pixels (X-size) of a specified character in the
current font.

GUI_GetFont() Returns a pointer to the currently selected font.

GUI_GetFontDistY() Returns the Y-spacing of the current font.

GUI_GetFontInfo() Returns a structure containing font information.

GUI_GetFontSizeY() Returns the height in pixels (Y-size) of the current font.

GUI_GetStringDistX() Returns the X-size of a text using the current font.

GUI_GetTextExtend() Evaluates the size of a text using the current font

GUI_GetYDistOfFont() Returns the Y-spacing of a particular font.

GUI_GetYSizeOfFont() Returns the Y-size of a particular font.

GUI_IsInFont() Evaluates whether a specified character is in a particular font.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

104 CHAPTER 8 Fonts
Prototype
const GUI_FONT * GUI_SetFont(const GUI_FONT * pNewFont);

Return value
Returns a pointer to the previously selected font so that it may be restored at a later
point.

Examples
Displays sample text in 3 different sizes, restoring the former font afterwards:
void DispText(void) {
 const GUI_FONT GUI_FLASH* OldFont=GUI_SetFont(&GUI_Font8x16);
 GUI_DispStringAt("This text is 8 by 16 pixels",0,0);
 GUI_SetFont(&GUI_Font6x8);
 GUI_DispStringAt("This text is 6 by 8 pixels",0,20);
 GUI_SetFont(&GUI_Font8);
 GUI_DispStringAt("This text is proportional",0,40);
 GUI_SetFont(OldFont); // Restore font
}

Screen shot of above example:

Displays text and value in different fonts:
 GUI_SetFont(&GUI_Font6x8);
 GUI_DispString("The result is: ");// Disp text
 GUI_SetFont(&GUI_Font8x8);
 GUI_DispDec(42,2);// Disp value

Screen shot of above example:

8.8 Common font-related functions

GUI_GetFont()
Description
Returns a pointer to the currently selected font.

Prototype
const GUI_FONT * GUI_GetFont(void)

GUI_GetCharDistX()
Description
Returns the width in pixels (X-size) used to display a specified character in the cur-
rently selected font.

Prototype
int GUI_GetCharDistX(U16 c);

Parameter Meaning

pFont Pointer to the font to be selected and used.

Parameter Meaning

c Character to calculate width from.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

105
GUI_GetFontDistY()
Description
Returns the Y-spacing of the currently selected font.

Prototype
int GUI_GetFontDistY(void);

Add. information
The Y-spacing is the vertical distance in pixels between two adjacent lines of text.
The returned value is the YDist value of the entry for the currently selected font.
The returned value is valid for both proportional and monospaced fonts.

GUI_GetFontInfo()
Description
Calculates a pointer to a GUI_FONTINFO structure of a particular font.

Prototype
void GUI_GetFontInfo(const GUI_FONT*pFont, GUI_FONTINFO* pfi);

Add. information
The definition of the GUI_FONTINFO structure is as follows:
typedef struct {
 U16 Flags;
} GUI_FONTINFO;

The member variable flags can take the following values:
GUI_FONTINFO_FLAG_PROP
GUI_FONTINFO_FLAG_MONO
GUI_FONTINFO_FLAG_AA
GUI_FONTINFO_FLAG_AA2
GUI_FONTINFO_FLAG_AA4

Example
Gets the info of GUI_Font6x8. After the calculation, FontInfo.Flags contains the
flag GUI_FONTINFO_FLAG_MONO.
GUI_FONTINFO FontInfo;
GUI_GetFontInfo(&GUI_Font6x8, &FontInfo);

GUI_GetFontSizeY()
Description
Returns the height in pixels (Y-size) of the currently selected font.

Prototype
int GUI_GetFontSizeY(void);

Add. information
The returned value is the YSize value of the entry for the currently selected font.
This value is less than or equal to the Y-spacing returned by the function
GUI_GetFontDistY().
The returned value is valid for both proportional and monospaced fonts.

Parameter Meaning

pFont Pointer to the font.

pfi Pointer to a GUI_FONTINFO structure.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 8 Fonts
GUI_GetStringDistX()
Description
Returns the X-size used to display a specified string in the currently selected font.

Prototype
int GUI_GetStringDistX(const char GUI_FAR *s);

GUI_GetTextExtend()
Description
Calculates the size of a given string using the current font.

Prototype
void GUI_GetTextExtend(GUI_RECT* pRect, const char* s, int Len);

GUI_GetYDistOfFont()
Description
Returns the Y-spacing of a particular font.

Prototype
int GUI_GetYDistOfFont(const GUI_FONT* pFont);

Add. information
(see GUI_GetFontDistY())

GUI_GetYSizeOfFont()
Description
Returns the Y-size of a particular font.

Prototype
int GUI_GetYSizeOfFont(const GUI_FONT* pFont);

Add. information
(see GUI_GetFontSizeY())

GUI_IsInFont()
Description
Evaluates whether or not a particular font contains a specified character.

Parameter Meaning

s Pointer to the string.

Parameter Meaning

pRect Pointer to GUI_RECT-structure to store result.

s Pointer to the string.

Len Number of characters of the string.

Parameter Meaning

pFont Pointer to the font.

Parameter Meaning

pFont Pointer to the font.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

107
Prototype
char GUI_IsInFont(const GUI_FONT*pFont, U16 c);

Add. information
If the pointer pFont is set to 0, the currently selected font is used.

Example
Evaluates whether the font GUI_FontD32 contains an "X":
if (GUI_IsInFont(&GUI_FontD32, 'X') == 0) {
 GUI_DispString("GUI_FontD32 does not contains 'X'");
}

8.9 Character sets

8.9.1 ASCII
emWin supports the full set of ASCII characters. These are the following 96 charac-
ters from 32 to 127:

Unfortunately, as ASCII stands for American Standard Code for Information Inter-
change, it is designed for American needs. It does not include any of the special
characters used in European languages, such as Ä, Ö, Ü, á, à, and others. There is no
single standard for these "European extensions" of the ASCII set of characters; sev-
eral different ones exist. The one used on the Internet and by most Windows pro-
grams is ISO 8859-1, a superset of the ASCII set of characters.

8.9.2 ISO 8859-1 Western Latin character set
 emWin supports the ISO 8859-1, which defines characters as listed below:

Parameter Meaning

pFont Pointer to the font.

c Character to be searched for.

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

2x ! "# $ % & '() * + , - . /

3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4x @ A B C D E F G H I J K L M N O

5x P Q R S T U V W X Y Z [\] ^ _

6x `a b c d e f g h i j k l m n o

7x p q r s t u v w x y z { | } ~

Code Description Char
160 non-breaking space
161 inverted exclamation ¡
162 cent sign ¢
163 pound sterling £
164 general currency sign ¤
165 yen sign ¥
166 broken vertical bar ¦
167 section sign §
168 umlaut (dieresis) ¨
169 copyright ©
170 feminine ordinal ª
171 left angle quote, guillemotleft «
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 8 Fonts
172 not sign ¬
173 soft hyphen
174 registered trademark ®
175 macron accent ¯
176 degree sign °
177 plus or minus ±
178 superscript two ²
179 superscript three ³
180 acute accent ´
181 micro sign µ
182 paragraph sign ¶
183 middle dot ·
184 cedilla ¸
185 superscript one ¹
186 masculine ordinal º
187 right angle quote, guillemot right »
188 fraction one-fourth ¼
189 fraction one-half ½
190 fraction three-fourth ¾
191 inverted question mark ¿
192 capital A, grave accent À
193 capital A, acute accent Á
194 capital A, circumflex accent Â
195 capital A, tilde Ã
196 capital A, dieresis or umlaut mark Ä
197 capital A, ring Å
198 capital A, diphthong (ligature) Æ
199 capital C, cedilla Ç
200 capital E, grave accent È
201 capital E, acute accent É
202 capital E, circumflex accent Ê
203 capital E, dieresis or umlaut mark Ë
204 capital I, grave accent Ì
205 capital I, acute accent Í
206 capital I, circumflex accent Î
207 capital I, dieresis or umlaut mark Ï
208 Eth, Icelandic Ð
209 N, tilde Ñ
210 capital O, grave accent Ò
211 capital O, acute accent Ó
212 capital O, circumflex accent Ô
213 capital O, tilde Õ
214 capital O, dieresis or umlaut mark Ö
215 multiply sign ×
216 capital O, slash Ø
217 capital U, grave accent Ù
218 capital U, acute accent Ú
219 capital U, circumflex accent Û
220 capital U, dieresis or umlaut mark Ü
221 capital Y, acute accent Ý
222 THORN, Icelandic Þ
223 sharp s, German (s-z ligature) ß
224 small a, grave accent à
225 small a, acute accent á
226 small a, circumflex accent â
227 small a, tilde ã
228 small a, dieresis or umlaut mark ä
229 small a, ring å
230 small ae diphthong (ligature) æ

Code Description Char
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

109
8.9.3 Unicode
Unicode is the ultimate in character coding. It is an international standard based on
ASCII and ISO 8859-1. Contrary to ASCII, UNICODE requires 16-bit characters
because all characters have their own code. Currently, more than 30,000 different
characters are defined. However, not all of the character images are defined in
emWin. It is the responsibility of the user to define these additional characters.
Please contact SEGGER Microcontroller Systeme GmbH or your distributor, as we may
already have the character set that you need.

8.10 Font converter
Fonts which can be used with emWin must be defined as GUI_FONT structures in "C".
The structures -- or rather the font data which is referenced by these structures --
can be rather large. It is very time-consuming and inefficient to generate these fonts
manually. We therefore recommend using the font converter, which automatically
generates "C" files from fonts.
The font converter is a simple Windows program. You need only to load an installed
Windows font into the program, edit it if you want or have to, and save it as a "C"
file. The "C" file may then be compiled, allowing the font to be shown on your display
with emWin on demand.
The character codes 0x00 - 0x1F and 0x80 - 0x9F are disabled by default. The fol-
lowing is a sample screen shot of the font converter with a font loaded:

231 cedilla ç
232 small e, grave accent è
233 small e, acute accent é
234 small e, circumflex accent ê
235 small e, dieresis or umlaut mark ë
236 small i, grave accent ì
237 small i, acute accent í
238 small i, circumflex accent î
239 small i, dieresis or umlaut mark ï
240 small eth, Icelandic ð
241 small n, tilde ñ
242 small o, grave accent ò
243 small o, acute accent ó
244 small o, circumflex accent õ
245 small o, tilde õ
246 small o, dieresis or umlaut mark ö
247 division sign ÷
248 small o, slash ø
249 small u, grave accent ù
250 small u, acute accent ú
251 small u, circumflex accent û
252 small u, dieresis or umlaut mark ü
253 small y, acute accent ý
254 small thorn, Icelandic þ
255 small y, dieresis or umlaut mark ÿ

Code Description Char
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

110 CHAPTER 8 Fonts
The font converter is described in a separate documentation which can be obtained
by request from SEGGER Microcontroller Systeme GmbH (info@segger.com).

8.10.1 Adding fonts
Once you have created a font file and linked it to the project, declare the linked font
as extern const GUI_FONT, as shown in the example below:

Example
extern const GUI_FONT GUI_FontNew;

int main(void) {
 GUI_Init();
 GUI_Clear();
 GUI_SetFont(&GUI_FontNew);
 GUI_DispString("Hello world\n");
 return 0;
}

8.11 Standard fonts
emWin is shipped with a selection of fonts which should cover most of your needs.
The standard font package contains monospaced and proportional fonts in different
sizes and styles. Monospaced fonts are fonts with a fixed character width, in which
all characters have the same width in pixels. Proportional fonts are fonts in which
each character has its own individual pixel-width.
This chapter provides an overview of the emWin standard fonts.

8.11.1 Font identifier naming convention
All standard fonts are named as follows. The elements of the naming convention are
then explained in the table:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

111
GUI_Font[<style>][<width>x]<height>[x<MagX>x<MagY>][H][B][_<characterset>]

Example 1
GUI_Font16_ASCII

Example 2
GUI_Font8x15B_ASCII

Example 3
GUI_Font8x16x1x2

8.11.2 Font file naming convention
The names for the font files are similar to the names of the fonts themselves. The
files are named as follows:

Element Meaning

GUI_Font Standard prefix for all fonts shipped with emWin.

<style>
Specifies a non-standard font style. Example: Comic style in
GUI_FontComic18B_ASCII.

<width> Width of characters, contained only in monspaced fonts.

<height> Height of the font in pixels.

<MagX> Factor of magnification in X, contained only in magnified fonts.

<MagY> Factor of magnification in Y, contained only in magnified fonts.

H
Abbreviation for "high". Only used if there is more than one font with the same
height. It means that the font appears "higher" than other fonts.

B Abbreviation for "bold". Used in bold fonts.

<characterset>

Specifies the contents of characters:
ASCII: Only ASCII characters 0x20-0x7E (0x7F).
1: ASCII characters and European extensions 0xA0 - 0xFF.
HK: Hiragana and Katakana.
1HK: ASCII, European extensions, Hiragana and Katakana.
D: Digit fonts, character set: +-.0123456789.

Element Meaning

GUI_Font Standard font prefix.

16 Heigth in pixels.

ASCII Font contains ASCII characters only.

Element Meaning

GUI_Font Standard font prefix.

8 Width of characters.

x15 Heigth in pixels.

B Bold font.

ASCII Font contains ASCII characters only.

Element Meaning

GUI_Font Standard font prefix.

8 Width of characters.

x16 Heigth in pixels.

x1 Magnification factor in X.

x2 Magnification factor in Y.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 8 Fonts
F[<width>]<height>[H][B][<characterset>]

8.11.3 Measurement, ROM-size and character set of fonts
The following pages describe the standard fonts shipped with emWin. For each font
there is a measurement diagram, an overview of all characters included and a table
containing the ROM size in bytes and the font files required for use.
The following parameters are used in the measurement diagrams:

Element Meaning

F Standard prefix for all fonts files shipped with emWin.

<width> Width of characters, contained only in monspaced fonts.

<height> Height of the font in pixels.

H
Abbreviation for "high". Only used if there is more than one font with the same
height. It means that the font appears "higher" than other fonts.

B Abbreviation for "bold". Used in bold fonts.

<characterset>

Specifies the contents of characters:
ASCII: Only ASCII characters 0x20-0x7E (0x7F).
1: ASCII characters and European extensions 0xA0 - 0xFF.
HK: Hiragana and Katakana.
1HK: ASCII, European extensions, Hiragana and Katakana.
D: Digit fonts.

Element Meaning

F Size of font in Y.

B Distance of base line from the top of the font.

C Height of capital characters.

L Height of lowercase characters.

U Size of underlength used by letters such as "g", "j" or "y".
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

113
8.11.4 Proportional fonts

8.11.4.1 Overview
The following screenshot gives an overview of all available proportional fonts:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 8 Fonts
8.11.4.2 Measurement, ROM size and used files
The following table shows the measurement, ROMsize and used files of the fonts:

Font name Measurement
ROM

size in
bytes

Used files

GUI_Font8_ASCII F: 8, B: 7, C: 7, L: 5, U: 1 1562 F08_ASCII.c

GUI_Font8_1 F: 8, B: 7, C: 7, L: 5, U: 1
1562+
1586

F08_ASCII.c
F08_1.c

GUI_Font10S_ASCII F: 10, B: 8, C: 6, L: 4, U: 2 1760 F10S_ASCII.c

GUI_Font10S_1 F: 10, B: 8, C: 6, L: 4, U: 2
1760+
1770

F10_ASCII.c
F10_1.c

GUI_Font10_ASCII F: 10, B: 9, C: 8, L: 6, U: 1 1800 F10_ASCII

GUI_Font10_1 F: 10, B: 9, C: 8, L: 6, U: 1
1800+
2456

F10_ASCII.c
F10_1.c

GUI_Font13_ASCII F: 13, B: 11, C: 8, L: 6, U: 2 2076 F13_ASCII.c

GUI_Font13_1 F: 13, B: 11, C: 8, L: 6, U: 2
2076+
2149

F13_ASCII.c
F13_1.c

GUI_Font13B_ASCII F: 13, B: 11, C: 8, L: 6, U: 2 2222 F13B_ASCII.c

GUI_Font13B_1 F: 13, B: 11, C: 8, L: 6, U: 2
2222+
2216

F13B_ASCII.c
F13B_1.c

GUI_Font13H_ASCII F: 13, B: 11, C: 9, L: 7, U: 2 2232 F13H_ASCII.c

GUI_Font13H_1 F: 13, B: 11, C: 9, L: 7, U: 2
2232+
2291

F13H_ASCII.c
F13H_1.c

GUI_Font13HB_ASCII F: 13, B: 11, C: 9, L: 7, U: 2 2690 F13HB_ASCII.c

GUI_Font13HB_1 F: 13, B: 11, C: 9, L: 7, U: 2
2690+
2806

F13HB_ASCII.c
F13HB_1.c

GUI_Font16_ASCII F: 16, B: 13, C: 10, L: 7, U: 3 2714 F16_ASCII.c

GUI_Font16_1 F: 16, B: 13, C: 10, L: 7, U: 3
2714+
3850

F16_ASCII.c
F16_1.c

GUI_Font16_HK - 6950 F16_HK.c

GUI_Font16_1HK F: 16, B: 13, C: 10, L: 7, U: 3

120+
6950+
2714+
3850

F16_1HK.c
F16_HK.c
F16_ASCII.c
F16_1.c

GUI_Font16B_ASCII F: 16, B: 13, C: 10, L: 7, U: 3 2690 F16B_ASCII.c

GUI_Font16B_1 F: 16, B: 13, C: 10, L: 7, U: 3
2690+
2790

F16B_ASCII.c
F16B_1.c

GUI_FontComic18B_ASCII F: 18, B: 15, C: 12, L: 9, U: 3 3572 FComic18B_ASCII.c

GUI_FontComic18B_1 F: 18, B: 15, C: 12, L: 9, U: 3
3572+
4334

FComic18B_ASCII.c
FComic18B_1.c

GUI_Font20_ASCII F: 20, B: 16, C: 13, L: 10, U: 4 4044 F20_ASCII.c

GUI_Font20_1 F: 20, B: 16, C: 13, L: 10, U: 4
4044+
4244

F20_ASCII.c
F20_1.c

GUI_Font20B_ASCII F: 20, B: 16, C: 13, L: 10, U: 4 4164 F20B_ASCII.c

GUI_Font20B_1 F: 20, B: 16, C: 13, L: 10, U: 4
4164+
4244

F20B_ASCII.c
F20B_1.c

GUI_Font24_ASCII F: 24, B: 20, C: 17, L: 13, U: 4 4786 F24_ASCII.c
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

115
8.11.4.3 Characters
The following shows all characters of all proportional standard fonts:

GUI_Font24_1 F: 24, B: 20, C: 17, L: 13, U: 4
4786+
5022

F24_ASCII.c
F24_1.c

GUI_Font24B_ASCII F: 24, B: 19, C: 15, L: 11, U: 5 4858 F24B_ASCII.c

GUI_Font24B_1 F: 24, B: 19, C: 15, L: 11, U: 5
4858+
5022

F24B_ASCII.c
F24B_1.c

GUI_FontComic24B_ASCII F: 24, B: 20, C: 17, L: 13, U: 4 6146 FComic24B_ASCII

GUI_FontComic24B_1 F: 24, B: 20, C: 17, L: 13, U: 4
6146+
5598

FComic24B_ASCII
FComic24B_1

GUI_Font32_ASCII F: 32, B: 26, C: 20, L: 15, U: 6 7234 F32_ASCII.c

GUI_Font32_1 F: 32, B: 26, C: 20, L: 15, U: 6
7234+
7734

F32_ASCII.c
F32_1.c

GUI_Font32B_ASCII F: 32, B: 25, C: 20, L: 15, U: 7 7842 F32B_ASCII.c

GUI_Font32B_1 F: 32, B: 25, C: 20, L: 15, U: 7
7842+
8118

F32B_ASCII.c
F32B_1.c

Font name Measurement
ROM

size in
bytes

Used files
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

116 CHAPTER 8 Fonts
GUI_Font8_ASCII

GUI_Font8_1

GUI_Font10S_ASCII

GUI_Font10S_1

GUI_Font10_ASCII

GUI_Font10_1

GUI_Font13_ASCII

GUI_Font13_1

GUI_Font13B_ASCII

GUI_Font13B_1
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

117
GUI_Font13H_ASCII

GUI_Font13H_1

GUI_Font13HB_ASCII

GUI_Font13HB_1

GUI_Font16_ASCII

GUI_Font16_1

GUI_Font16_HK
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 8 Fonts
GUI_Font16_1HK

GUI_Font16B_ASCII

GUI_Font16B_1

GUI_FontComic18B_ASCII

GUI_FontComic18B_1
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

119
GUI_Font20_ASCII

GUI_Font20_1

GUI_Font20B_ASCII

GUI_Font20B_1

GUI_Font24_ASCII
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 8 Fonts
GUI_Font24_1

GUI_Font24B_ASCII

GUI_Font24B_1

GUI_FontComic24B_ASCII
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

121
GUI_FontComic24B_1

GUI_Font32_ASCII

GUI_Font32_1
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 8 Fonts
GUI_Font32B_ASCII

GUI_Font32B_1
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

123
8.11.5 Monospaced fonts

8.11.5.1 Overview
The following screenshot gives an overview of all available monospaced fonts:

8.11.5.2 Measurement, ROM size and used files
The following table shows the measurement, ROMsize and used files of the fonts:

Font name Measurement
ROM size in

bytes
Used files

GUI_Font4x6 F: 6, B: 5, C: 5, L: 4, U: 1 620 F4x6.c

GUI_Font6x8 F: 8, B: 7, C: 7, L: 5, U: 1 1840 F6x8.c

GUI_Font6x9 F: 9, B: 7, C: 7, L: 5, U: 2
1840
(same ROM location
as GUI_Font6x8)

F6x8.c

GUI_Font8x8 F: 8, B: 7, C: 7, L: 5, U: 1 1840 F8x8.c

GUI_Font8x9 F: 9, B: 7, C: 7, L: 5, U: 2
1840
(same ROM location
as GUI_Font8x8)

F8x8.c

GUI_Font8x10_ASCII F: 10, B: 9, C: 9, L: 7, U: 1 1770 F8x10_ASCII.c

GUI_Font8x12_ASCII F: 12, B: 10, C: 9, L: 6, U: 2 1962 F8x12_ASCII.c

GUI_Font8x13_ASCII F: 13, B: 11, C: 9, L: 6, U: 2 2058 F8x13_ASCII.c

GUI_Font8x13_1 F: 13, B: 11, C: 9, L: 6, U: 2
2058+
2070

F8x13_ASCII.c
F8x13_1.c

GUI_Font8x15B_ASCII F: 15, B: 12, C: 9, L: 7, U: 3 2250 F8x15_ASCII.c

GUI_Font8x15B_1 F: 15, B: 12, C: 9, L: 7, U: 3
2250+
2262

F8x15B_ASCII.c
F8x15B_1.c

GUI_Font8x16 F: 16, B: 12, C: 10, L: 7, U: 4 3304 F8x16.c
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 8 Fonts
8.11.5.3 Characters
The following shows all characters of all monospaced standard fonts:

GUI_Font4x6

GUI_Font6x8

GUI_Font6x9

GUI_Font8x8

GUI_Font8x9

GUI_Font8x10_ASCII

GUI_Font8x17 F: 17, B: 12, C: 10, L: 7, U: 5
3304
(same ROM location
as GUI_Font8x16)

F8x16.c

GUI_Font8x18 F: 18, B: 12, C: 10, L: 7, U: 6
3304
(same ROM location
as GUI_Font8x16)

F8x16.c

GUI_Font8x16x1x2 F: 32, B: 24, C: 20, L: 14, U: 8
3304
(same ROM location
as GUI_Font8x16)

F8x16.c

GUI_Font8x16x2x2 F: 32, B: 24, C: 20, L: 14, U: 8
3304
(same ROM location
as GUI_Font8x16)

F8x16.c

GUI_Font8x16x3x3 F: 48, B: 36, C: 30, L: 21, U: 12
3304
(same ROM location
as GUI_Font8x16)

F8x16.c

Font name Measurement
ROM size in

bytes
Used files
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

125
GUI_Font8x12_ASCII

GUI_Font8x13_ASCII

GUI_Font8x13_1

GUI_Font8x15B_ASCII

GUI_Font8x15B_1

GUI_Font8x16

GUI_Font8x17
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 8 Fonts
GUI_Font8x18

GUI_Font8x16x1x2

GUI_Font8x16x2x2
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

127
GUI_Font8x16x3x3
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 8 Fonts
8.11.6 Digit fonts (proportional)

8.11.6.1 Overview
The following screenshot gives an overview of all available proportional digit fonts:

8.11.6.2 Measurement, ROM size and used files
The following table shows the measurement, ROMsize and used files of the fonts:

8.11.6.3 Characters
The following shows all characters of all proportional digit fonts:

GUI_FontD32

Font name Measurement
ROM size in

bytes
Used files

GUI_FontD32 F: 32, C: 31 1574 FD32.c

GUI_FontD48 F: 48, C: 47 3512 FD48.c

GUI_FontD64 F: 64, C: 63 5384 FD64.c

GUI_FontD80 F: 80, C: 79 8840 FD80.c
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

129
GUI_FontD48

GUI_FontD64

GUI_FontD80
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 8 Fonts
8.11.7 Digit fonts (monospaced)

8.11.7.1 Overview
The following screenshot gives an overview of all available monospaced digit fonts:

8.11.7.2 Measurement, ROM size and used files
The following table shows the measurement, ROMsize and used files of the fonts:

8.11.7.3 Characters
The following shows all characters of all monospaced digit fonts:

GUI_FontD24x32

Font name Measurement
ROM size in

bytes
Used files

GUI_FontD24x32 F: 32, C: 31 1606 FD24x32.c

GUI_FontD36x48 F: 48, C: 47 3800 FD36x48.c

GUI_FontD48x64 F: 64, C: 63 5960 FD48x60.c

GUI_FontD60x80 F: 80, C: 79 9800 FD60x80.c
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

131
GUI_FontD36x48

GUI_FontD48x64

GUI_FontD60x80
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 8 Fonts
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

133
Chapter 9

Bitmap Converter
The bitmap converter is a Windows program which is easy to use. Simply load a bit-
map (in the form of a .bmp or a .gif file) into the application. Convert the color for-
mat if you want or have to, and convert it into a "C" file by saving it in the
appropriate format. The "C" file may then be compiled, allowing the image to be
shown on your display with emWin.

Screenshot of the Bitmap Converter
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

134 CHAPTER 9 Bitmap Converter
9.1 What it does
The bitmap converter is primarily intended as a tool to convert bitmaps from a PC
format to a "C" file. Bitmaps which can be used with emWin are normally defined as
GUI_BITMAP structures in "C". The structures -- or rather the picture data which is
referenced by these structures -- can be quite large. It is time-consuming and ineffi-
cient to generate these bitmaps manually. We therefore recommend using the bitmap
converter, which automatically generates "C" files from bitmaps.
It also features color conversion, so that the resulting "C" code is not unnecessarily
large. You would typically reduce the number of bits per pixel in order to reduce
memory consumption. The bitmap converter displays the converted image.
A number of simple functions can be performed with the bitmap converter, including
scaling the size, flipping the bitmap horizontally or vertically, rotating it, and invert-
ing the bitmap indices or colors (these features can be found under the Image menu).
Any further modifications to an image must be made in a bitmap manipulation pro-
gram such as Adobe Photoshop or Corel Photopaint. It usually makes the most sense
to perform any image modifications in such a program, using the bitmap converter
for converting purposes only.

9.2 Loading a bitmap

9.2.1 Supported file formats
The bitmap converter basically supports 2 file formats: Windows bitmap files (*.bmp)
and "Graphic Interchange Format" (*.gif):

Windows Bitmap Files
The bitmap converter supports the most common bitmap file formats. Bitmap files of
the following formats can be opened by the bitmap converter:

� 1, 4 or 8 bits per pixel (bpp) with palette;
� 16, 24 or 32 bpp without palette (full-color mode, in which each color is assigned

an RGB value);
� RLE4 and RLE8.

Trying to read bitmap files of other formats will cause an error message of the bitmap
converter.

Graphic Interchange Format
The bitmap converter supports reading of one image per GIF file. If the file for exam-
ple contains a movie consisting of more than one image, the converter reads only the
first image.
Transparency and interlaced GIF images are supported by the converter.

9.2.2 Loading from a file
An image file of one of the supported formats may be opened directly in the bitmap
converter by selecting File/Open.

9.2.3 Using the clipboard
Any other type of bitmap (i.e. .jpg, .jpeg, .png, .tif) may be opened with another
program, copied to the clipboard, and pasted into the bitmap converter. This process
will achieve the same effect as loading directly from a file.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

135
9.3 Generating "C" files from bitmaps
The main function of the bitmap converter is to convert PC-formatted bitmaps into
"C" files which can be used by emWin. Before doing so, however, it is often desirable
to modify the color palette of an image so that the generated "C" file is not exces-
sively large.
The bitmap may be saved as a .bmp or a .gif file (which can be reloaded and used
or loaded into other bitmap manipulation programs) or as a "C" file. A "C" file will
serve as an input file for your "C" compiler. It may contain a palette (device-indepen-
dent bitmap, or DIB) or be saved without (device-dependent bitmap, or DDB). DIBs
are recommended, as they will display correctly on any display; a DDB will only dis-
play correctly on a display which uses the same palette as the bitmap.
"C" files may be generated as "C with palette", "C without palette", "C with palette,
compressed" or "C without palette, compressed". For more information on com-
pressed files, see the section "Compressed bitmaps" as well as the example at the
end of the chapter.

9.3.1 Supported bitmap formats
The following table shows the currently available output formats for "C" files:

Warning: Note that emWin 8051 only supports uncompressed Bitmaps with a
color depth of 1 to 8 bits per pixel.

9.3.2 Palette information
A bitmap palette is an array of 24 bit RGB color entries. Bitmaps with a color depth
from 1 - 8 bpp can be saved with (device independent bitmap, DIB) or without pal-
ette information (device dependent bitmap DDB).

Device independent bitmaps (DIB)
The color information is stored in the form of an index into the color array. Before
emWin draws a DIB, it converts the 24 bit RGB colors of the bitmap palette into color
indices of the hardware palette. The advantage of using DIBs is that they are hard-
ware independent and can be drawn correctly on systems with different color config-
urations. The disadvantages are the additional ROM requirement for the palette and
the slower performance because of the color conversion.

Device dependent bitmaps (DDB)
The pixel information of a DDB is the index of the displays hardware palette. No con-
version needs to be done before drawing a DDB. The advantages are less ROM
requirement and a better performance. The disadvantage is that these bitmaps can
not be displayed correctly on systems with other color configurations.

Format
Color
depth

Com-
pression

Trans-
parency

Palette

1 bit per pixel 1bpp no yes yes
2 bits per pixel 2bpp no yes yes
4 bits per pixel 4bpp no yes yes
8 bits per pixel 8bpp no yes yes
Compressed, RLE4 4bpp yes yes yes
Compressed, RLE8 8bpp yes yes yes
High color 555 15bpp no no no
High color 555, red and blue swapped 15bpp no no no
High color 565 16bpp no no no
High color 565, red and blue swapped 16bpp no no no
High color 565, compressed 16bpp yes no no
High color 565, red and blue swapped, compressed 16bpp yes no no
True color 888 24bpp no no no
True color 888, red and blue swapped 24bpp no no no
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 9 Bitmap Converter
9.3.3 Transparency
A palette based bitmap can be converted to a transparent bitmap. Transparency
means each pixel with index 0 will not produce any output. The command Image/
Transparency can be used to select the color which should be used for transparency.
After selecting the transparent color, the pixel indices of the image will be recalcu-
lated, so that the selected color is on position 0 of the bitmap palette. When saving
the bitmap file as �C� file, it will be saved with the transparency attribute.

9.3.4 Alpha blending
Note: This feature is not supported by emWin 8051.
Alpha blending is a method of combining an image with the background to create the
effect of semi transparency. The alpha value of a pixel determines its transparency.
The color of a pixel after drawing the bitmap is a blend of the former color and the
color value in the bitmap. In emWin logical colors are handled as 32 bit values. The
lower 24 bits are used for the color information and the upper 8 bits are used to
manage the alpha value. An alpha value of 0 means the image is opaque and a value
of 0xFF means completely transparent. Because the supported file formats (BMP and
GIF) do not support alpha blending, the bitmap converter initially has no information
about the alpha values. It supports specifying/calculating the alpha values by two
ways:

Loading the alpha values from an alpha mask bitmap
This method loads the alpha values from a separate file. Black pixels of the alpha
mask file means opaque and white means transparent. The following table shows a
sample:

The command File/Load Alpha Mask can be used for loading an alpha mask.

Creating the alpha values from two bitmaps
This method uses the difference between the pixels of two pictures to calculate the
alpha values. The first image should show the item on a black background. The sec-
ond image should show the same on a white background. The following table shows a
sample of how to create the alpha values using the command File/Create Alpha:

The command File/Create Alpha can be used tor creating the alpha values.

Starting point Alpha mask Result

Starting point Black background White background Result
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

137
9.3.5 Selecting the best format
emWin supports various formats for the generated "C" file. It depends on several
conditions which will be the �best� format and there is no general rule to be used.
Color depth, compression, palette and transparency affect the drawing performance
and/or ROM requirement of the bitmap.

Color depth
In general the lower the color depth the smaller the ROM requirement of the bitmap.
Each display driver has been optimized for drawing 1bpp bitmaps (text) and bitmaps
with the same color depth as the display.

Compression
The supported RLE compression method has the best effect on bitmaps with many
horizontal sequences of equal-colored pixels. Details later in this chapter. The perfor-
mance is typically slightly slower than drawing uncompressed bitmaps.

Palette
The ROM requirement of a palette is 4 bytes for each color. So a palette of 256 colors
uses 1kB. Furthermore emWin needs to convert the colors of the palette before draw-
ing the bitmap. Advantage: Bitmaps are device independent meaning they can be
displayed on any display, independent of its color depth and format.

Transparency
The ROM requirement of transparent bitmaps is the same as without transparency.
The performance is with transparency slightly slower than without.

High color and true color bitmaps
Special consideration is required for bitmaps in these formats. Generally the use of
these formats only make sense on displays with a color depth of 15 bits and above.
Further it is strongly recommended to save the �C� files in the exact same format
used by the hardware. Please note that using the right format will have a positive
effect on the drawing performance. If a high color bitmap for example should be
shown on a system with a color depth of 16bpp which has the red and blue compo-
nents swapped, the best format is �High color 565, red and blue swapped�. Already a
slightly other format has the effect, that each pixel needs color conversion, whereas
a bitmap in the right format can be rendered very fast without color conversion. The
difference of drawing performance in this case can be factor 10 and more.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 9 Bitmap Converter
9.3.6 Saving the file
The basic procedure for using the bitmap converter is illustrated below:

Step 1: Start the application.

The bitmap converter is opened showing an empty
window.

Step 2: Load a bitmap into the bitmap converter.

Choose File/Open.
Locate the document you want to open and click
Open (must be a .bmp file).
In this example, the file SeggerLogo200.bmp
is chosen.

The bitmap converter displays the loaded bitmap.

In this example, the loaded bitmap is in full-color
mode. It must be converted to a palette format
before a "C" file can be generated.

Step 3: Convert the image if necessary.

Choose Image/Convert Into.
Select the desired palette.
In this example, the option Best palette is
chosen.

The bitmap converter displays the converted bit-
map.

The image is unchanged in terms of appearance,
but uses less memory since a palette of only 15
colors is used instead of the full-color mode.
These 15 colors are the only ones actually
required to display this particular image.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

139
9.4 Color conversion
The primary reason for converting the color format of a bitmap is to reduce memory
consumption. The most common way of doing this is by using the option Best pal-
ette as in the above example, which customizes the palette of a particular bitmap to
include only the colors which are used in the image. It is especially useful with full-
color bitmaps in order to make the palette as small as possible while still fully sup-
porting the image. Once a bitmap file has been opened in the bitmap converter, sim-
ply select Image/Convert Into/Best palette from the menu.
For certain applications, it may be more efficient to use a fixed color palette, chosen
from the menu under Image/Convert Into. For example, suppose a bitmap in full-
color mode is to be shown on a display which supports only four grayscales. It would
be a waste of memory to keep the image in the original format, since it would only
appear as four grayscales on the display. The full-color bitmap can be converted into
a four-grayscale, 2bpp bitmap for maximum efficiency.
The procedure for conversion would be as follows:

Step 4: Save the bitmap as a "C" file.

Choose File/Save As.
Select a destination and a name for the "C" file.
Select the file type. In this example, the file is
saved as "C" bitmap file."
Click Save.

Step 5: Specify bitmap format.

If the bitmap should be saved as �C� file the format
should now be specified. Use one of the available
formats shown in the dialog. If the bitmap should
be saved without palette, activate the check box
"Without palette"

The bitmap converter will create a separate file in
the specified destination, containing the "C"
source code for the bitmap.

The bitmap converter is opened and the same file
is loaded as in steps 1 and 2 of the previous
example.

The bitmap converter displays the loaded bitmap.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 9 Bitmap Converter
9.5 Compressed bitmaps
The bitmap converter and emWin support run-length encoding (RLE) compression of
bitmaps in the resulting source code files. The RLE compression method works most
efficiently if your bitmap contains many horizontal sequences of equal-colored pixels.
An efficiently compressed bitmap will save a significant amount of space. However,
compression is not recommended for photographic images since they do not normally
have sequences of identical pixels. It should also be noted that a compressed image
may take slightly longer to display.
If you want to save a bitmap using RLE compression, you can do so by selecting one
of the compressed output formats when saving as a "C" file: "C with palette, com-
pressed" or "C without palette, compressed". There are no special functions needed
for displaying compressed bitmaps; it works in the same way as displaying uncom-
pressed bitmaps.

Compression ratios
The ratio of compression achieved will vary depending on the bitmap used. The more
horizontal uniformity in the image, the better the ratio will be. A higher number of
bits per pixel will also result in a higher degree of compression.
In the bitmap used in the previous examples, the total number of pixels in the image
is (200*94) = 18,800.
Since 2 pixels are stored in 1 byte, the total uncompressed size of the image is
18,800/2 = 9,400 bytes.
The total compressed size for this particular bitmap is 3,803 bytes for 18,800 pixels
(see the example at the end of the chapter).
The ratio of compression can therefore be calculated as 9,400/3,803 = 2.47.

9.6 Using a custom palette
Converting bitmaps to a custom palette and saving them without palette information
can save memory and can increase the performance of bitmap drawing operations.

More efficien memory utilisation
Per default each bitmap contains its own palette. Even the smallest bitmaps can con-
tain a large palette with up to 256 colors. In many cases only a small fraction of the
palette is used by the bitmap. If using many of these bitmaps the amount of memory
used by the palettes can grow rapidly.

Choose Image/Convert Into/Gray4.

The bitmap converter displays the converted bit-
map.

In this example, the image uses less memory
since a palette of only 4 grayscales is used instead
of the full-color mode. If the target display sup-
ports only 4 grayscales, there is no use in having
a higher pixel depth as it would only waste mem-
ory.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

141
So it can save much ROM if converting the bitmaps used by emWin to the available
hardware palette and saving them as (D)evice (D)ependent (B)itmaps without pal-
ette information.

Better bitmap drawing performance
Before emWin draws a bitmap, it needs to convert each device independent bitmap
palette to the available hardware palette. This is required because the pixel indices of
the bitmap file are indices into the device independent bitmap palette and not to the
available hardware palette.
Converting the bitmap to a DDB means that color conversion at run time is not
required and speeds up the drawing.

9.6.1 Saving a palette file
The bitmap converter can save the palette of the currently loaded bitmap into a pal-
ette file which can be used for converting other bitmaps with the command Image/
Convert Into/Custom palette. This requires that the current file is a palette based
file and not a RGB file. To save the palette the command File/Save palette... can
be used.

9.6.2 Palette file format
Custom palette files are simple files defining the available colors for conversion. They
contain the following:

� Header (8 bytes).
� NumColors (U32, 4 bytes).
� 0 (4 bytes).
� U32 Colors[NumColors] (NumColors*4 bytes, type GUI_COLOR).

Total file size is therefore: 16+(NumColors*4) bytes. A custom palette file with 8
colors would be 16+(8*4) = 48 bytes. At this point, a binary editor must be used in
order to create such a file.
The maximum number of colors supported is 256; the minimum is 2.

Sample
This sample file would define a palette containing 2 colors -- red and white:

0000: 65 6d 57 69 6e 50 61 6c 02 00 00 00 00 00 00 00
0010: ff 00 00 00 ff ff ff 00

The 8 headers make up the first eight bytes of the first line. The U32 is stored lsb
first (big endian) and represents the next four bytes, followed by the four 0 bytes.
Colors are stored 1 byte per color, where the 4th byte is 0 as follows: RRGGBB00.
The second line of code defines the two colors used in this sample.

9.6.3 Palette files for fixed palette modes
Using the custom palette feature can even make sense with the most common used
fixed palette modes, not only with custom hardware palettes. For the most palette
based fixed palette modes a palette file can be found in the folder Sample\Palette.

9.6.4 Converting a bitmap
The command Image/Convert Into/Custom palette should be used for converting
the currently loaded bitmap to a custom palette. The bitmap converter tries to find
the narest color of the palette file for each pixel of the currently loaded bitmap.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

142 CHAPTER 9 Bitmap Converter
9.7 Command line usage
It is also possible to work with the bitmap converter using the command prompt. All
conversion functions available in the bitmap converter menu are available as com-
mands, and any number of functions may be performed on a bitmap in one command
line.

9.7.1 Format for commands
Commands are entered using the following format:

BmpCvt <filename>.bmp <-command>

(If more than one command is used, one space is typed between each.)
For example, a bitmap with the name logo.bmp is converted into Best palette for-
mat and saved as a "C" file named logo.bmp all at once by entering the following at
the command prompt:

BmpCvt logo.bmp -convertintobestpalette -saveaslogo,1 -exit

Note that while the file to be loaded into the bitmap converter always includes its
.bmp extension, no file extension is written in the -saveas command. An integer is
used instead to specify the desired file type. The number 1 in the -saveas command
above designates "C with palette". The -exit command automatically closes the pro-
gram upon completion. See the table below for more information.

9.7.2 Valid command line options
The following table lists all permitted bitmap converter commands. It can also be
viewed at any time by entering BmpCvt -? at the command prompt.

Command Explanation

-convertintobw Convert to BW.

-convertintogray4 Convert to Gray4.

-convertintogray16 Convert to Gray16.

-convertintogray64 Convert to Gray64.

-convertintogray256 Convert to Gray256.

-convertinto111 Convert to 111.

-convertinto222 Convert to 222.

-convertinto233 Convert to 233.

-convertinto323 Convert to 323.

-convertinto332 Convert to 332.

-convertinto8666 Convert to 8666.

-convertintorgb Convert to RGB.

-convertintobestpalette Convert to best palette.

-convertintocustompalette<filename> Convert to a custom palette.

<filename> User-specified filename of desired custom
palette.

-exit Terminate PC program automatically.

-fliph Flip image horizontally.

-flipv Flip image vertically.

-help Display this box.

-invertindices Invert indices.

-rotate90cw Rotate image by 90 degrees clockwise.

-rotate90cc
Rotate image by 90 degrees counter-
clockwise.

-rotate180 Rotate image by 180 degrees.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

143
-saveas<filename>,<type>[,<fmt>[,<noplt>]] Save file as filename.

<filename>
User-specified file name including the file
extension.

<type>

Must be an integer from 1 to 6 as follows:
1: "C" with palette (.c file)
2: Windows Bitmap file (.bmp file)
3: "C" stream (.dta file)
4: GIF format (.gif file)

<fmt>

Specifies the bitmap format (only if type
== 1):
1: 1 bit per pixel
2: 2 bits per pixel
4: 4 bits per pixel
5: 8 bits per pixel
6: RLE4 compression
7: RLE8 compression
8: High color 565
9: High color 565, red and blue swapped
10: High color 555
11: High color 555, red and blue swapped
12: RLE16 compression
13: RLE16 compression, red and blue
swapped
17: True color 24bpp

If this parameter is not given, the bitmap
converter uses the following default for-
mats in dependence of the number of col-
ors of the bitmap:
Number of colors <= 2: 1 bit per pixel
Number of colors <= 4: 2 bits per pixel
Number of colors <= 16: 4 bits per pixel
Number of colors <= 256: 8 bits per pixel
RGB: High color 565

<noplt>

Saves the bitmap with or without palette
(only if type == 1)
0: Save bitmap with palette (default)
1: Save bitmap without palette

-transparency<RGB-Color> Sets the transparent color.

<RGB-Color>
RGB color which should be used as trans-
parent color.

-? Display this box.

Command Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 9 Bitmap Converter
9.8 Example of a converted bitmap
A typical example for the use of the bitmap converter would be the conversion of
your company logo into a "C" bitmap. Take another look at the sample bitmap pic-
tured below:

The bitmap is loaded into the bitmap converter, converted to Best palette, and
saved as "C with palette". The resulting "C" source code is displayed below (some
data is not shown to conserve space).

 Resulting "C" code (generated by bitmap converter)
/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* www.segger.com *
**
*
* C-file generated by
*
* Bitmap converter for emWin V3.76.
* Compiled Feb 10 2004, 09:26:47
* (C) 1998 - 2004 Segger Microcontroller Systeme GmbH
*
**
*
* Source file: test
* Dimensions: 200 * 94
* NumColors: 15
*
**
*/

#include "stdlib.h"

#include "GUI.h"

#ifndef GUI_CONST_STORAGE
 #define GUI_CONST_STORAGE const
#endif

/* Palette
The following are the entries of the palette table.
Every entry is a 32-bit value (of which 24 bits are actually used)
the lower 8 bits represent the Red component,
the middle 8 bits represent the Green component,
the highest 8 bits (of the 24 bits used) represent the Blue component
as follows: 0xBBGGRR
*/

static GUI_CONST_STORAGE GUI_COLOR ColorsLogo[] = {
 0xFFFFFF,0xFF0000,0x000000,0x0F0F0F
 ,0x1C1F23,0xC3C3C3,0x020202,0xFBEFEF
 ,0xFF3B3B,0x5A5B5E,0x909294,0xFFC1C1
 ,0xD0D1D1,0xFF6868,0xFF9393
};

static GUI_CONST_STORAGE GUI_LOGPALETTE PalLogo = {
 15,/* number of entries */
 0, /* No transparency */
 &ColorsLogo[0]
};

static GUI_CONST_STORAGE unsigned char acLogo[] = {
0x00, 0x00, 0xC9, 0x43, ... , 0x00,/* Not all data is shown */
0x00, 0x0A, 0x32, 0x22, ... , 0x00,/* in this example */
0x00, 0x92, 0x22, 0x22, ... , 0x00,
0x0A, 0x22, 0x22, 0x22, ... , 0xA0,
0xC6, 0x22, 0x23, 0x95, ... , 0x6C,
.
.
.
0xC6, 0x22, 0x23, 0xA5, ... , 0x6C,
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

145
0x0A, 0x22, 0x22, 0x22, ... , 0x90,
0x07, 0x92, 0x22, 0x22, ... , 0x70,
0x00, 0x7A, 0x32, 0x22, ... , 0x00,
0x00, 0x00, 0xCA, 0x44, ... , 0x00
};

GUI_CONST_STORAGE GUI_BITMAP bmLogo = {
 200, /* XSize */
 94, /* YSize */
 100, /* BytesPerLine */
 4, /* BitsPerPixel */
 acLogo, /* Pointer to picture data (indices) */
 &PalLogo /* Pointer to palette */
};

/* *** End of file *** */

Compressing the file
We can use the same bitmap image to create a compressed "C" file, which is done
simply by loading and converting the bitmap as before, and saving it as "C with pal-
ette, compressed". The source code is displayed below (some data is not shown to
conserve space).

The compressed image size can be seen towards the end of the file as 3,803 bytes for
18,800 pixels.

Resulting compressed "C" code (generated by bitmap converter)
/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* www.segger.com *
**
*
* C-file generated by
*
* Bitmap converter for emWin V3.76.
* Compiled Feb 10 2004, 09:26:47
* (C) 1998 - 2004 Segger Microcontroller Systeme GmbH
*
**
*
* Source file: test
* Dimensions: 200 * 94
* NumColors: 15
*
**
*/

#include "stdlib.h"

#include "GUI.h"

#ifndef GUI_CONST_STORAGE
 #define GUI_CONST_STORAGE const
#endif

/* Palette
The following are the entries of the palette table.
Every entry is a 32-bit value (of which 24 bits are actually used)
the lower 8 bits represent the Red component,
the middle 8 bits represent the Green component,
the highest 8 bits (of the 24 bits used) represent the Blue component
as follows: 0xBBGGRR
*/

static GUI_CONST_STORAGE GUI_COLOR ColorsLogoCompressed[] = {
 0xFFFFFF,0xFF0000,0x000000,0x0F0F0F
 ,0x1C1F23,0xC3C3C3,0x020202,0xFBEFEF
 ,0xFF3B3B,0x5A5B5E,0x909294,0xFFC1C1
 ,0xD0D1D1,0xFF6868,0xFF9393
};

static GUI_CONST_STORAGE GUI_LOGPALETTE PalLogoCompressed = {
 15,/* number of entries */
 0, /* No transparency */
 &ColorsLogoCompressed[0]
};
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 9 Bitmap Converter
static GUI_CONST_STORAGE unsigned char acLogoCompressed[] = {
 /* RLE: 004 Pixels @ 000,000*/ 4, 0x00,
 /* ABS: 003 Pixels @ 004,000*/ 0, 3, 0xC9, 0x40,
 /* RLE: 186 Pixels @ 007,000*/ 186, 0x03,
 /* ABS: 003 Pixels @ 193,000*/ 0, 3, 0x49, 0xC0,
 /* RLE: 007 Pixels @ 196,000*/ 7, 0x00,
.
.
.
 /* RLE: 006 Pixels @ 198,092*/ 6, 0x00,
 /* ABS: 004 Pixels @ 004,093*/ 0, 4, 0xCA, 0x44,
 /* RLE: 184 Pixels @ 008,093*/ 184, 0x03,
 /* ABS: 004 Pixels @ 192,093*/ 0, 4, 0x44, 0xA5,
 /* RLE: 004 Pixels @ 196,093*/ 4, 0x00,

 0}; /* 3803 for 18800 pixels */

GUI_CONST_STORAGE GUI_BITMAP bmLogoCompressed = {
 200, /* XSize */
 94, /* YSize */
 100, /* BytesPerLine */
 GUI_COMPRESS_RLE4, /* BitsPerPixel */
 acLogoCompressed, /* Pointer to picture data (indices) */
 &PalLogoCompressed /* Pointer to palette */
 ,GUI_DRAW_RLE4
};

/* *** End of file *** */
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

147
Chapter 10

Colors
emWin supports black/white, grayscale (monochrome with different intensities) and
color displays. The same user program can be used with any display; only the LCD-
configuration needs to be changed. The color management tries to find the closest
match for any color that should be displayed.
Logical colors are the colors the application deals with. A logical colors is always
defined as an RGB value. This is a 24-bit value containing 8 bits per color as follows:
0xBBGGRR. Therefore, white would be 0xFFFFFF, black would be 0x000000, bright
red 0xFF.
Physical colors are the colors which can actually be displayed by the display. They
are specified in the same 24-bit RGB format as logical colors. At run-time, logical col-
ors are mapped to physical colors.
For displays with few colors (such as monochrome displays or 8/16-color LCDs),
emWin converts them by using an optimized version of the "least-square deviation
search". It compares the color to display (the logical color) with all the available col-
ors that the LCD can actually show (the physical colors) and uses the one that the
LCD-metric considers closest.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

148 CHAPTER 10 Colors
10.1 Predefined colors
In addition to self-defined colors, some standard colors are predefined in emWin, as
shown in the following table:

Example
/* Set background color to magenta */
GUI_SetBkColor(GUI_MAGENTA);
GUI_Clear();

10.2 The color bar test routine
The color bar sample program is used to show 13 color bars as follows:

Black -> Red, White -> Red, Black -> Green, White -> Green, Black -> Blue, White -
> Blue, Black -> White, Black -> Yellow, White -> Yellow, Black -> Cyan, White ->
Cyan, Black -> Magenta and White -> Magenta.

This little routine may be used on all displays in any color format. Of course, the
results vary depending on the colors that can be displayed; the routine requires a
display size of 320*240 in order to show all colors. The routine is used to demon-
strate the effect of the different color settings for displays. It may also be used by a
test program to verify the functionality of the display, to check available colors and
grayscales, as well as to correct color conversion. The screen shots are taken from
the windows simulation and will look exactly like the actual output on your display if
your settings and hardware are working properly. The routine is available as
COLOR_ShowColorBar.c in the samples shipped with emWin.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

149
10.3 Fixed palette modes
The following table lists the available fixed palette color modes and the necessary
#defines which need to be made in the file LCDConf.h in order to select them.
Detailed descriptions follow.

L
C

D
_

F
IX

E
D

P
A

L
E

T
T

E
(C

o
lo

r M
o

d
e

)

No. available colors

L
C

D
_

S
W

A
P

_
R

B

Mask

1 2 (black and white) x 0x01

2 4 (grayscales) x 0x03

4 16 (grayscales) x 0x0F

5 32 (grayscales) x 0x1F

111 8 0 BGR

111 8 1 RGB

222 64 0 BBGGRR

222 64 1 RRGGBB

233 256 0 BBGGGRRR

233 256 1 RRGGGBBB

323 256 0 BBBGGRRR

323 256 1 RRRGGBBB

332 256 0 BBBGGGRR

332 256 1 RRRGGGBB

44412 4096 0 0000BBBBGGGGRRRR

44412 4096 1 0000RRRRGGGGBBBB

444121 4096 0 BBBBGGGGRRRR0000

44416 4096 0 0BBBB0GGGG0RRRR0

44416 4096 1 0RRRR0GGGG0BBBB0

555 32768 0 0BBBBBGGGGGRRRRR

555 32768 1 0RRRRRGGGGGBBBBB

556 65536 0 BBBBBGGGGGRRRRRR

556 65536 1 RRRRRGGGGGBBBBBB

565 65536 0 BBBBBGGGGGGRRRRR

565 65536 1 RRRRRGGGGGGBBBBB

655 65536 0 BBBBBBGGGGGRRRRR

655 65536 1 RRRRRRGGGGGBBBBB

666 262144 0 BBBBBBGGGGGGRRRRRR

822216 256 x 0xFF
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

150 CHAPTER 10 Colors
10.4 Default fixed palette modes
If no fixed palette mode has been defined in the file LCDConf.h, emWin uses a
default value depending on the used color depth. The following table shows the
default fixed palette modes depending on the value of LCD_BITSPERPIXEL:

84444 240 x 0xFF

8666 232 x 0xFF

86661 233 (232 + transparency) x 0xFF

888 16777216 0 BBBBBBBBGGGGGGGGRRRRRRRR

888 16777216 1 RRRRRRRRGGGGGGGGBBBBBBBB

8888
16777216 + 8 bit alpha
blending

0 AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR

8888
16777216 + 8 bit alpha
blending

1 AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

-1 x x x

LCD_BITSPERPIXEL Default fixed palette mode

1 1

2 2

4 4

5 5

8 8666

12 44412

15 555

16 565

24 888

32 8888

L
C

D
_

F
IX

E
D

P
A

L
E

T
T

E
(C

o
lo

r M
o

d
e

)

No. available colors

L
C

D
_

S
W

A
P

_
R

B

Mask
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

151
10.5 Detailed fixed palette mode description
The following gives a detailed description of the available colors in each predefined
fixed palette mode.

1 mode: 1 bpp (black and white)
Use of this mode is necessary for monochrome dis-
plays with 1 bit per pixel.

Available colors: 2:

2 mode: 2 bpp (4 grayscales)
Use of this mode is necessary for monochrome dis-
plays with 2 bits per pixel.

Available colors: 2 x 2 = 4:

4 mode: 4 bpp (16 grayscales)
Use of this mode is necessary for monochrome dis-
plays with 4 bits per pixel.

Available colors: 2 x 2 x 2 x 2 = 16:

5 mode: 5 bpp (32 grayscales)
Use of this mode is necessary for monochrome dis-
plays with 5 bits per pixel.

Available colors: 2 x 2 x 2 x 2 x 2 = 32:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER 10 Colors
111 mode: 3 bpp (2 levels per color)
Use this mode if the basic 8 colors are enough, if
your hardware supports only one bit per pixel and
color or if you do not have sufficient video memory
for a higher color depth.
Color mask: BGR

Available colors: 2 x 2 x 2 = 8:

111 mode: 3 bpp (2 levels per color), red and blue swapped
Use this mode if the basic 8 colors are enough, if your hardware supports only one bit
per pixel and color or if you do not have sufficient video memory for a higher color
depth. The available colors are the same as those in 111 mode.
Color mask: RGB
Available colors: 2 x 2 x 2 = 8:

222 mode: 6 bpp (4 levels per color)
This mode is a good choice if your hardware does not
have a palette for every individual color. 2 bits per
pixel and color are reserved; usually 1 byte is used
to store one pixel.
Color mask: BBGGRR

Available colors: 4 x 4 x 4 = 64:

222 mode: 6 bpp (4 levels per color), red and blue swapped
This mode is a good choice if your hardware does not have a palette for every indi-
vidual color. 2 bits per pixel and color are reserved; usually 1 byte is used to store
one pixel. The available colors are the same as those in 222 mode.
Color mask: RRGGBB
Available colors: 4 x 4 x 4 = 64:

233 mode: 8 bpp
This mode supports 256 colors. 3 bits are used for
the red and green components of the color and 2 bits
for the blue component. As shown in the picture, the
result is 8 grades for green and red and 4 grades for
blue. We discourage the use of this mode because it
do not contain real shades of gray.
Color mask: BBGGGRRR
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

153
Available colors: 4 x 8 x 8 = 256:

233 mode: 8 bpp, red and blue swapped
This mode supports 256 colors. 3 bits are used for
the red and green components of the color and 2 bits
for the blue component. The result is 8 grades for
green and blue and 4 grades for red. We discourage
the use of this mode because it do not contain real
shades of gray.
Color mask: RRGGGBBB

Available colors: 4 x 8 x 8 = 256:

323 mode: 8 bpp
This mode supports 256 colors. 3 bits are used for
the red and blue components of the color and 2 bits
for the green component. As shown in the picture,
the result is 8 grades for blue and red and 4 grades
for green. We discourage the use of this mode
because it do not contain real shades of gray.
Color mask: BBBGGRRR
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

154 CHAPTER 10 Colors
Available colors: 8 x 4 x 8 = 256:

323 mode: 8 bpp, red and blue swapped
This mode supports 256 colors. 3 bits are used for the red and blue components of
the color and 2 bits for the green component. The available colors are the same as
those in 323 mode. The result is 8 grades for red and blue and 4 grades for green.
We discourage the use of this mode because it do not contain real shades of gray.
Color mask: RRRGGBBB
Available colors: 8 x 4 x 8 = 256:

332 mode: 8 bpp
This mode supports 256 colors. 3 bits are used for
the blue and green components of the color and 2
bits for the red component. As shown in the picture,
the result is 8 grades for green and blue and 4
grades for red. We discourage the use of this mode
because it do not contain real shades of gray.
Color mask: BBBGGGRR

Available colors: 8 x 8 x 4 = 256:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

155
332 mode: 8 bpp, red and blue swapped
This mode supports 256 colors. 3 bits are used for
the red and green components of the color and 2 bits
for the blue component. The result is 8 grades for
red and green and only 4 grades for blue. We dis-
courage the use of this mode because it do not con-
tain real shades of gray.
Color mask: RRRGGGBB

Available colors: 8 x 8 x 4 = 256:

44412 mode:
The red, green and blue components are each 4 bits.
Color mask: 0000BBBBGGGGRRRR
Available colors: 16 x 16 x 16 = 4096.

44416 mode:
The red, green and blue components are each 4 bits.
One bit between the color components is not used. The available colors are the same
as those in 44412 mode.
Color mask: 0BBBB0GGGG0RRRR0
Available colors: 16 x 16 x 16 = 4096.

44412 mode: red and blue swapped
The red, green and blue components are each 4 bits. The available colors are the
same as those in 44412 mode.
Available colors: 16 x 16 x 16 = 4096.
Color mask: RRRRGGGGBBBB

44416 mode: red and blue swapped
The red, green and blue components are each 4 bits. One bit between the color com-
ponents is not used. The available colors are the same as those in 44412 mode.
Color mask: 0RRRR0GGGG0BBBB0
Available colors: 16 x 16 x 16 = 4096.

444121 mode:
The red, green and blue components are each 4 bits. The lower 4 bits of the color
mask are not used. The available colors are the same as those in 44412 mode.
Color mask: BBBBGGGGRRRR0000
Available colors: 16 x 16 x 16 = 4096.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER 10 Colors
555 mode: 15 bpp
Use of this mode is necessary for a display controller
that supports RGB colors with a color-depth of 15
bpp (such as SED1356 or SED13806). The red,
green and blue components are each 5 bits.
Color mask: BBBBBGGGGGRRRRR
Available colors: 32 x 32 x 32 = 32768.

555 mode: 15 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 15 bpp. The red, green and blue components are each 5 bits. The
available colors are the same as those in 555 mode.
Color mask: RRRRRGGGGGBBBBB
Available colors: 32 x 32 x 32 = 32768.

565 mode: 16 bpp
Use of this mode is necessary for a display controller
that supports RGB colors with a color-depth of 16
bpp. The red and the blue component is 5 bits and
the green component is 6 bit.
Color mask: BBBBBGGGGGGRRRRR
Available colors: 32 x 64 x 32 = 65536.

565 mode: 16 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The available colors are the same as those in 565 mode.
Color sequence: RRRRRGGGGGGBBBBB
Available colors: 32 x 64 x 32 = 65536.

556 mode: 16 bpp
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The blue and the green component is 5 bit and the red compo-
nent is 6 bit.
Color mask: BBBBBGGGGGRRRRRR
Available colors: 32 x 32 x 64 = 65536.

556 mode: 16 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The red and the green component is 5 bit and the blue compo-
nent is 6 bit.
Color mask: RRRRRGGGGGBBBBBB
Available colors: 32 x 32 x 64 = 65536.

655 mode: 16 bpp
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The red and the green component is 5 bit and the blue compo-
nent is 6 bit.
Color mask: BBBBBBGGGGGRRRRR
Available colors: 64 x 32 x 32 = 65536.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

157
655 mode: 16 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The blue and the green component is 5 bit and the red compo-
nent is 6 bit.
Color mask: RRRRRRGGGGGBBBBB
Available colors: 64 x 32 x 32 = 65536.

666 mode: 18 bpp
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 18 bpp. The red, green and the blue component is 6 bit.
Color mask: BBBBBBGGGGGGRRRRRR
Available colors: 64 x 64 x 64 = 262144.

666 mode: 18 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 18 bpp. The red, green and the blue component is 6 bit.
Color mask: RRRRRRGGGGGGBBBBBB
Available colors: 64 x 64 x 64 = 262144.

822216 mode: 8 bpp, 2 levels per color + 8
grayscales + 16 levels of alpha blending

This mode can be used with a programmable color
lookup table (LUT), supporting a total of 256 possi-
ble colors and alpha blending support. It supports
the 8 basic colors, 8 grayscales and 16 levels of
alpha blending for each color / grayscale. With other
words it can be used if only a few colors are required
but more levels of alpha blending.

Available colors: (2 x 2 x 2 + 8) * 16 = 256

84444 mode: 8 bpp, 4 levels per color + 16
grayscales + 4(3) levels of alpha blending

This mode can be used with a programmable color
lookup table (LUT), supporting a total of 256 possi-
ble colors and alpha blending support. 4 levels of
intensity are available for each color, in addition to
16 grayscales and 4 levels of alpha blending for each
color / grayscale. With other words it can be used if
only a few levels of alpha blending are required and
different shades of colors.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER 10 Colors
Available colors: (4 x 4 x 4 + 16) * 3 = 240

8666 mode: 8bpp, 6 levels per color + 16 gray-
scales

This mode is most frequently used with a program-
mable color lookup table (LUT), supporting a total of
256 possible colors using a palette. The screen shot
gives an idea of the available colors; this mode con-
tains the best choice for general purpose applica-
tions. Six levels of intensity are available for each
color, in addition to 16 grayscales.

Available colors: 6 x 6 x 6 + 16 = 232:

86661 mode: 8bpp, 6 levels per color + 16 grayscales + transparency
This mode is most frequently used with multi layer configurations and a programma-
ble color lookup table (LUT), supporting a total of 256 possible colors using a palette.
The difference between 8666 and 86661 is, that the first color indices of the 86661
mode are not used. So the color conversion routine GUI_Color2Index does never
return 0 which is used for transparency.
Available colors: 6 x 6 x 6 + 16 = 232.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

159
888 mode: 24 bpp
Use of this mode is necessary for a display controller
that supports RGB colors with a color depth of 24
bpp. The red, green and blue components are each 8
bits.
Color mask: BBBBBBBBGGGGGGGGRRRRRRRR
Available colors: 256 x 256 x 256 = 16777216.

888 mode: 24 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color depth of 24 bpp. The red, green and blue components are each 8 bits.
Color mask: RRRRRRRRGGGGGGGGBBBBBBBB
Available colors: 256 x 256 x 256 = 16777216.

8888 mode: 32 bpp
Use of this mode is necessary for a display controller that supports RGB colors with a
color depth of 32 bpp, where the lower 3 bytes are used for the color components
and the upper byte is used for alpha blending. The red, green, blue and alpha blend-
ing components are each 8 bits.
Color mask: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR
Available colors: 256 x 256 x 256 = 16777216.

8888 mode: 32 bpp, red and blue swapped
Use of this mode is necessary for a display controller that supports RGB colors with a
color depth of 32 bpp, where the lower 3 bytes are used for the color components
and the upper byte is used for alpha blending. The red, green, blue and alpha blend-
ing components are each 8 bits.
Color mask: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB
Available colors: 256 x 256 x 256 = 16777216.

-1 mode: Application defined fixed palette mode
If none of the fixed palette modes matches the need of color conversion this mode
makes it possible to use an application defined fixed palette mode. Color conversion
(RGB -> Index, Index -> RGB) will be done by calling application defined conversion
routines. When setting LCD_FIXEDPALETTE to -1, emWin expects the following con-
version functions as part of the application program:

unsigned LCD_Color2Index_User(LCD_COLOR Color);
LCD_COLOR LCD_Index2Color_User(int Index);
unsigned LCD_GetIndexMask_User(void);

The function LCD_Color2Index_User() is called by emWin if a RGB value should be
converted into an index value for the display controller whereas the function
LCD_Index2Color_User() is called if an index value should be converted into a RGB
value.
LCD_GetIndexMask_User() should return a bit mask value, which has each bit set to
1 which is used by the display controller and unused bits should be set to 0. For
example the index mask of the 44416 mode is 0BBBB0GGGG0RRRR0, where 0 stands
for unused bits. The bit mask for this mode is 0x7BDE.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER 10 Colors
10.6 Custom palette modes
emWin can handle a custom hardware palette. A custom palette simply lists all the
available colors in the same order as they are used by the hardware. This means that
no matter what colors your LCD controller/display combination is able to display,
emWin will be able to simulate them in the PC simulation and handle these colors
correctly in your target system. Working with a custom palette requires a color depth
<= 8 bpp.
In order to define a custom palette, you should do so in the configuration file LCD-
Conf.h.

Example
The following example (part of LCDConf.h) would define a custom palette with 4 col-
ors, all of which are shades of gray:
#define LCD_FIXEDPALETTE 0
#define LCD_PHYSCOLORS 0xffffff, 0xaaaaaa, 0x555555, 0x000000

10.7 Modifying the color lookup table at run time
The color information at each pixel is stored either in RGB mode (in which the red,
green and blue components are kept for each pixel) or in color-index mode (in which
a single number called the color index is stored for each pixel). Each color index cor-
responds to an entry in a lookup table, or color map, that defines a specific set of R,
G and B values.
If your LCD controller features a color lookup table (LUT), it is properly initialized by
emWin during the initialization phase (GUI_Init() -> LCD_Init() ->
LCD_InitLUT() -> LCD_L0_SetLUTEntry()). However, it might be desirable (for var-
ious reasons) to modify the LUT at run time. Some possible reasons include:

� Color corrections in order to compensate for display problems (non-linearities) or
gamma-correction

� Inversion of the display.
� The need to use more colors (at different times) than the hardware can show (at

one time).

If you are simply modifying the LUT at run time, the color conversion routines will not
be aware of this and will therefore still assume that the LUT is initialized as it was
originally.

Using different colors
The default contents of the color table are defined at compile time in the configura-
tion file GUIConf.h (LCD_PHYSCOLORS). In order to minimize RAM consumption, this
data is normally declared const and is therefore stored in ROM. In order to be able to
modify it, it needs to be stored in RAM. This can be achieved by activation of the con-
figuration switch LCD_LUT_IN_RAM. If this is enabled, the API function
GUI_SetLUTColor() becomes available and can be used to modify the contents of the
color table and the LUT at the same time.
A call to LCD_InitLUT() will restore the original (default) settings.

10.8 Color API
The following table lists the available color-related functions in alphabetical order
within their respective categories. Detailed description of the routines can be found
in the sections that follow.

Routine Explanation

Basic color functions
GUI_GetBkColor() Return the current background color.

GUI_GetBkColorIndex() Return the index of the current background color.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

161
10.9 Basic color functions

GUI_GetBkColor()
Description
Returns the current background color.

Prototype
GUI_COLOR GUI_GetBkColor(void);

Return value
The current background color.

GUI_GetBkColorIndex()
Description
Returns the index of the current background color.

Prototype
int GUI_GetBkColorIndex(void);

Return value
The current background color index.

GUI_GetColor()
Description
Returns the current foreground color.

Prototype
GUI_COLOR GUI_GetColor(void);

Return value
The current foreground color.

GUI_GetColor() Return the current foreground color.

GUI_GetColorIndex() Return the index of the current foreground color.

GUI_SetBkColor() Set the current background color.

GUI_SetBkColorIndex() Set the index of the current background color.

GUI_SetColor() Set the current foreground color.

GUI_SetColorIndex() Set the index of the current foreground color.

Index & color conversion
GUI_CalcColorDist() Returns the difference between 2 colors

GUI_CalcVisColorError() Returns the difference to the next available color

GUI_Color2Index() Convert color into color index.

GUI_Color2VisColor() Returns the nearest available color

GUI_ColorIsAvailable() Checks if given color is available

GUI_Index2Color() Convert color index into color.

Lookup table (LUT) group
GUI_InitLUT() Initialize the LUT (hardware).

GUI_SetLUTColor() Set color of a color index (both hardware and color table).

GUI_SetLUTEntry() Write a value into the LUT (hardware).

Routine Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

162 CHAPTER 10 Colors
GUI_GetColorIndex()
Description
Returns the index of the current foreground color.

Prototype
int GUI_GetColorIndex(void);

Return value
The current foreground color index.

GUI_SetBkColor()
Description
Sets the current background color.

Prototype
GUI_COLOR GUI_SetBkColor(GUI_COLOR Color);

Return value
The selected background color.

GUI_SetBkColorIndex()
Description
Sets the index of the current background color.

Prototype
int GUI_SetBkColorIndex(int Index);

Return value
The selected background color index.

GUI_SetColor()
Description
Sets the current foreground color.

Prototype
void GUI_SetColor(GUI_COLOR Color);

Return value
The selected foreground color.

Parameter Meaning

Color Color for background, 24-bit RGB value.

Parameter Meaning

Index Index of the color to be used.

Parameter Meaning

Color Color for foreground, 24-bit RGB value.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

163
GUI_SetColorIndex()
Description
Sets the index of the current foreground color.

Prototype
void GUI_SetColorIndex(int Index);

Return value
The selected foreground color index.

10.10 Index & color conversion

GUI_CalcColorDist()
Calculates the distance between 2 colors. The distance will be calculated by the sum
of the square value from the distances of the red, green and the blue component:
Difference = (Red1 - Red0)² + (Green1 - Green0)² + (Blue1 - Blue0)²

Prototype
U32 GUI_CalcColorDist(GUI_COLOR Color0, GUI_COLOR Color1))

Return value
The distance as described above.

GUI_CalcVisColorError()
Calculates the distance to the next available color. For details about the calculation
please take a look at GUI_CalcColorDist.

Prototype
U32 GUI_CalcVisColorError(GUI_COLOR color)

Return value
The distance to the next available color.

GUI_Color2Index()
Returns the index of a specified RGB color value.

Prototype
int GUI_Color2Index(GUI_COLOR Color)

Parameter Meaning

Index Index of the color to be used.

Parameter Meaning

Color0 RGB value of the first color.

Color1 RGB value of the second color.

Parameter Meaning

Color RGB value of the color to be calculated.

Parameter Meaning

Color RGB value of the color to be converted.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER 10 Colors
Return value
The color index.

GUI_Color2VisColor()
Returns the next available color of the system as an RGB color value.

Prototype
GUI_COLOR GUI_Color2VisColor(GUI_COLOR color)

Return value
The RGB color value of the nearest available color.

GUI_ColorIsAvailable()
Checks if the given color is available.

Prototype
char GUI_ColorIsAvailable(GUI_COLOR color)

Return value
1 if color is available, 0 if not.

GUI_Index2Color()
Returns the RGB color value of a specified index.

Prototype
int GUI_Index2Color(int Index)

Return value
The RGB color value.

10.11 Lookup table (LUT) group
These functions are optional and will work only if supported by the LCD controller
hardware. A display controller with LUT hardware is required. Please consult the
manual for the LCD controller you are using for more information on LUTs.

GUI_InitLUT()
Description
Initializes the lookup table of the LCD controller(s).

Prototype
void LCD_InitLUT(void);

Parameter Meaning

Color RGB value of the color.

Parameter Meaning

Color RGB value of the color.

Parameter Meaning

Index Index of the color. to be converted
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

165
Add. information
The lookup table needs to be enabled (by the LCD_INITCONTROLLER macro) for this
function to have any effect.

GUI_SetLUTColor()
Description
Modifies a single entry to the color table and the LUT of the LCD controller(s).

Prototype
void GUI_SetLUTColor(U8 Pos, GUI_COLOR Color);

Add. information
The closest value possible will be used for the LUT. If a color LUT is to be initialized,
all 3 components are used. In monochrome modes the green component is used, but
it is still recommended (for better understanding of the program code) to set all 3
colors to the same value (such as 0x555555 or 0xa0a0a0).
The lookup table needs to be enabled (by the LCD_INITCONTROLLER macro) for this
function to have any effect. This function is always available, but has an effect only
if:
a) The LUT is used
b) The color table is located in RAM (LCD_PHYSCOLORS_IN_RAM)

GUI_SetLUTEntry()
Description
Modifies a single entry to the LUT of the LCD controller(s).

Prototype
void GUI_SetLUTEntry(U8 Pos, GUI_COLOR Color);

Add. information
The closest value possible will be used for the LUT. If a color LUT is to be initialized,
all 3 components are used. In monochrome modes the green component is used, but
it is still recommended (for better understanding of the program code) to set all 3
colors to the same value (such as 0x555555 or 0xa0a0a0).
The lookup table needs to be enabled (by the LCD_INITCONTROLLER macro) for this
function to have any effect. This function is often used to ensure that the colors actu-
ally displayed match the logical colors (linearization).

Example
//
// Linearize the palette of a 4-grayscale LCD
//
GUI_SetLUTEntry(0, 0x000000);
GUI_SetLUTEntry(1, 0x777777); // 555555 would be linear
GUI_SetLUTEntry(2, 0xbbbbbb); // aaaaaa would be linear
GUI_SetLUTEntry(3, 0xffffff);

Parameter Meaning

Pos
Position within the lookup table. Should be less than the number of colors (e.g.
0-3 for 2 bpp, 0-15 for 4 bpp, 0-255 for 8 bpp).

Color 24-bit RGB value.

Parameter Meaning

Pos
Position within the lookup table. Should be less than the number of colors (e.g.
0-3 for 2 bpp, 0-15 for 4 bpp, 0-255 for 8 bpp).

Color 24-bit RGB value.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

166 CHAPTER 10 Colors
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

167
Chapter 11

Execution Model: Single Task /
Multitask
emWin has been designed from the beginning to be compatible with different types of
environments. It works in single task and in multitask applications, with a proprietary
operating system or with any commercial RTOS such as embOS or uC/OS.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

168 CHAPTER 11 Execution Model: Single Task / Multitask
11.1 Supported execution models
We have to basically distinguish between 3 different execution models:

Single task system (superloop)
The entire program runs in one superloop. Normally, all software components are
peridocally called. Interrupts must be used for real time parts of the software since
no real time kernel is used.

Multitask system: one task calling emWin
A real time kernel (RTOS) is used, but only one task calls emWin functions. From the
graphic software�s point of view, it is the same as being used in a single task system.

Multitask system: multiple tasks calling emWin
A real time kernel (RTOS) is used, and multiple tasks call emWin functions. This
works without a problem as long as the software is made thread-safe, which is done
by enabling multitask support in the configuration and adapting the kernel interface
routines. For popular kernels, the kernel interface routines are readily available.

11.2 Single task system (superloop)

11.2.1 Description
The entire program runs in one superloop. Normally, all components of the software
are peridocally called. No real time kernel is used, so interrupts must be used for real
time parts of the software. This type of system is primarily used in smaller systems
or if real time behavior is not critical.

11.2.2 Superloop example (without emWin)
void main (void) {
 HARDWARE_Init();

 /* Init software components */
 XXX_Init();
 YYY_Init();

 /* Superloop: call all software components regularily */
 while (1) {
 /* Exec all compontents of the software */
 XXX_Exec();
 YYY_Exec();
 }
}

11.2.3 Advantages
No real time kernel is used (-> smaller ROM size, just one stack -> less RAM for
stacks), no preemption/synchronization problems.

11.2.4 Disadvantages
The superloop type of program can become hard to maintain if it exceeds a certain
program size. Real time behavior is poor, since one software component cannot be
interrupted by any other component (only by interrupts). This means that the reac-
tion time of one software component depends on the exectution time of all other
components in the system.

11.2.5 Using emWin
There are no real restrictions regarding the use of emWin. As always, GUI_Init()
has to be called before you can use the software. From there on, any API function
can be used. If the window manager�s callback mechanism is used, then an emWin
update function has to be called regularly. This is typically done by calling the
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

169
GUI_Exec() from within the superloop. Blocking functions such as GUI_Delay() and
GUI_ExecDialog() should not be used in the loop since they would block the other
software modules.
The default configuration, which does not support multitasking (#define GUI_OS 0)
can be used; kernel interface routines are not required.

11.2.6 Superloop example (with emWin)
void main (void) {
 HARDWARE_Init();

 /* Init software components */
 XXX_Init();
 YYY_Init();
 GUI_Init(); /* Init emWin */

 /* Superloop: call all software components regularily */
 while (1) {
 /* Exec all compontents of the software */
 XXX_Exec();
 YYY_Exec();
 GUI_Exec(); /* Exec emWin for functionality like updating windows */
 }
}

11.3 Multitask system: one task calling emWin

11.3.1 Description
A real time kernel (RTOS) is used. The user program is split into different parts,
which execute in different tasks and typically have different priorities. Normally the
real time critical tasks (which require a certain reaction time) will have the highest
priorities. One single task is used for the user interface, which calls emWin func-
tions. This task usually has the lowest priority in the system or at least one of the
lowest (some statistical tasks or simple idle processing may have even lower priori-
ties).
Interrupts can, but do not have to be used for real time parts of the software.

11.3.2 Advantages
The real time behavior of the system is excellent. The real time behavior of a task is
affected only by tasks running at higher priority. This means that changes to a pro-
gram component running in a low priority task do not affect the real time behavior at
all. If the user interface is executed from a low priority task, this means that changes
to the user interface do not affect the real time behavior. This kind of system makes
it easy to assign different components of the software to different members of the
development team, which can work to a high degree independently from each other.

11.3.3 Disadvantages
You need to have a real time kernel (RTOS), which costs money and uses up ROM and
RAM (for stacks). In addition, you will have to think about task synchronization and
how to transfer information from one task to another.

11.3.4 Using emWin
If the window manager�s callback mechanism is used, then an emWin update function
(typically GUI_Exec(), GUI_Delay()) has to be called regularly from the task calling
emWin. Since emWin is only called by one task, to emWin it is the same as being
used in a single task system.
The default configuration, which does not support multitasking (#define GUI_OS 0)
can be used; kernel interface routines are not required. You can use any real time
kernel, commercial or proprietary.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER 11 Execution Model: Single Task / Multitask
11.4 Multitask system: multiple tasks calling emWin

11.4.1 Description
A real time kernel (RTOS) is used. The user program is split into different parts,
which execute in different tasks with typically different priorities. Normally the real
time critical tasks (which require a cretain reaction time) will have the highest priori-
ties. Multiple tasks are used for the user interface, calling emWin functions. These
tasks typically have low priorities in the system, so they do not affect the real time
behaviour of the system.
Interrupts can, but do not have to be used for real time parts of the software.

11.4.2 Advantages
The real time behavior of the system is excellent. The real time behavior of a task is
affected only by tasks runnig at higher priority. This means that changes of a pro-
gram component running in a low priority task do not affect the real time behavior at
all. If the user interface is executed from a low priority task, this means that changes
on the user interface do not affect the real time behavior. This kind of system makes
it easy to assign different components of the software to different members of the
development team, which can work to a high degree independently from each other.

11.4.3 Disadvantages
You have to have a real time kernel (RTOS), which costs money and uses up some
ROM and RAM (for stacks). In addition, you will have to think about task synchroni-
zation and how to transfer information from one task to another.

11.4.4 Using emWin
If the window manager�s callback mechanism is used, then an emWin update function
(typically GUI_Exec(), GUI_Delay()) has to be called regularly from one or more
tasks calling emWin.
The default configuration, which does not support multitasking (#define GUI_OS 0)
can NOT be used. The configuration needs to enable multitasking support and define
a maximum number of tasks from which emWin is called (excerpt from GUIConf.h):

#define GUI_OS 1 // Enable multitasking support
#define GUI_MAX_TASK 5 // Max. number of tasks that may call emWin

Kernel interface routines are required, and need to match the kernel being used. You
can use any real time kernel, commercial or proprietary. Both the macros and the
routines are discussed in the following chapter sections.

11.4.5 Recommendations
� Call the emWin update functions (i.e. GUI_Exec(), GUI_Delay()) from just one

task. It will help to keep the program structure clear. If you have sufficient RAM
in your system, dedicate one task (with the lowest priority) to updating emWin.
This task will continuously call GUI_Exec() as shown in the example below and
will do nothing else.

� Keep your real time tasks (which determine the behavior of your system with
respect to I/O, interface, network, etc.) seperate from tasks that call emWin.
This will help to assure best real time performance.

� If possible, use only one task for your user interface. This helps to keep the pro-
gram structure simple and simplifies debugging. (However, this is not required
and may not be suitable in some systems.)

11.4.6 Example
This excerpt shows the dedicated emWin update task. It is taken from the example
MT_Multitasking, which is included in the samples shipped with emWin:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

171
/***
*
* GUI background processing
*
* This task does the background processing.
* The main job is to update invalid windows, but other things such as
* evaluating mouse or touch input may also be done.
*/
void GUI_Task(void) {
 while(1) {
 GUI_Exec(); /* Do the background work ... Update windows etc.) */
 GUI_X_ExecIdle(); /* Nothing left to do for the moment ... Idle processing */
 }
}

11.5 GUI configuration macros for multitasking support
The following table shows the configuration macros used for a multitask system with
multiple tasks calling emWin:

GUI_MAXTASK
Description
Defines the maximum number of tasks from which emWin is called to access the dis-
play.

Type
Numerical value

Add. information
This function is only relevant when GUI_OS is activated.

GUI_OS
Description
Enables multitasking support by activating the module GUITask.

Type
Binary switch
0: inactive, multitask support disabled (default)
1: active, multitask support enabled

GUI_X_SIGNAL_EVENT
Description
Defines a function that signals an event.

Type Macro Default Explanation

N GUI_MAXTASK 4
Define the maximum number of tasks from
which emWin is called when multitasking
support is enabled (see below).

B GUI_OS 0 Activate to enable multitasking support.

F GUI_X_SIGNAL_EVENT() - Defines a function that signals an event.

F GUI_X_WAIT_EVENT() GUI_X_ExecIdle() Defines a function that waits for an event.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

172 CHAPTER 11 Execution Model: Single Task / Multitask
Type
Function replacement

Add. information
Per default the GUI needs to periodically check for events unless a function is defined
which waits and one that triggers an event. This macro defines the function which
triggers an event. It makes only sense in combination with GUI_X_WAIT_EVENT. The
advantage of using the macros GUI_X_SIGNAL_EVENT and GUI_X_WAIT_EVENT instead
of polling is the reduction of CPU load of the waiting task to 0% while it waits for
input. If the macro has been defined as recommended and the user gives the system
any input (keyboard or pointer input device) the defined function should signal an
event.
It is recommended to specify the function GUI_X_SignalEvent() for the job.

Sample
#define GUI_X_SIGNAL_EVENT() GUI_X_SignalEvent()

GUI_X_WAIT_EVENT
Description
Defines a function which waits for an event.

Type
Function replacement

Add. information
Per default the GUI needs to periodically check for events unless a function is defined
which waits and one that triggers an event. This macro defines the function which
waits for an event. Makes only sense in combination with GUI_X_SIGNAL_EVENT. The
advantage of using the macros GUI_X_SIGNAL_EVENT and GUI_X_WAIT_EVENT instead
of polling is the reduction of CPU load of the waiting task to 0% while it waits for
input. If the macro has been defined as recommended and the system waits for user
input the defined function should wait for an event signaled from the function defined
by the macro GUI_X_SIGNAL_EVENT.
It is recommended to specify the function GUI_X_WaitEvent() for the job.

Sample
#define GUI_X_WAIT_EVENT() GUI_X_WaitEvent()

11.6 Kernel interface routine API
An RTOS usually offers a mechanism called a resource semaphore, in which a task
using a particular resource claims that resource before actually using it. The display
is an example of a resource that needs to be protected with a resource semaphore.
emWin uses the macro GUI_USE to call the function GUI_Use() before it accesses the
display or before it uses a critical internal data structure. In a similar way, it calls
GUI_Unuse() after accessing the display or using the data structure. This is done in
the module GUITask.c.
GUITask.c in turn uses the GUI kernel interface routines shown in the table below.
These routines are prefixed GUI_X_ since they are high-level (hardware-dependent)
functions. They must be adapted to the real time kernel used in order to make the
emWin task (or thread) safe. Detailed descriptions of the routines follow, as well as
examples of how they are adapted for different kernels.

Routine Explanation

GUI_X_InitOS()
Initialize the kernel interface module (create a resource semaphore/
mutex).

GUI_X_GetTaskId() Return a unique, 32-bit identifier for the current task/thread.

GUI_X_Lock() Lock the GUI (block resource semaphore/mutex).
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

173
GUI_X_InitOS()
Description
Creates the resource semaphore or mutex typically used by GUI_X_Lock() and
GUI_X_Unlock().

Prototype
void GUI_X_InitOS(void)

GUI_X_GetTaskID()
Description
Returns a unique ID for the current task.

Prototype
U32 GUI_X_GetTaskID(void);

Return value
ID of the current task as a 32-bit integer.

Add. information
Used with a real-time operating system.
It does not matter which value is returned, as long as it is unique for each task/
thread using the emWin API and as long as the value is always the same for each
particular thread.

GUI_X_Lock()
Description
Locks the GUI.

Prototype
void GUI_X_Lock(void);

Add. information
This routine is called by the GUI before it accesses the display or before using a crit-
ical internal data structure. It blocks other threads from entering the same critical
section using a resource semaphore/mutex until GUI_X_Unlock() has been called.
When using a real time operating system, you normally have to increment a counting
resource semaphore.

GUI_X_SignalEvent()
Description
Signals an event.

Prototype
void GUI_X_SignalEvent(void);

Add. information
This function is optional, it is used only via the macro GUI_X_SIGNAL_EVENT().

GUI_X_SignalEvent() Signals an event.

GUI_X_Unlock() Unlock the GUI (unblock resource semaphore/mutex).

GUI_X_WaitEvent() Waits for an event.

Routine Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER 11 Execution Model: Single Task / Multitask
GUI_X_Unlock()
Description
Unlocks the GUI.

Prototype
void GUI_X_Unlock(void);

Add. information
This routine is called by the GUI after accessing the display or after using a critical
internal data structure.
When using a real time operating system, you normally have to decrement a count-
ing resource semaphore.

GUI_X_WaitEvent()
Description
Waits for an event.

Prototype
void GUI_X_WaitEvent(void);

Add. information
This function is optional, it is used only via the macro GUI_X_WAIT_EVENT().

Examples
Kernel interface routines for embOS
The following example shows an adaption for embOS (excerpt from file
GUI_X_embOS.c located in the folder Sample\GUI_X):

#include "RTOS.H"

static OS_TASK* _pGUITask;
static OS_RSEMA _RSema;

void GUI_X_InitOS(void) { OS_CreateRSema(&_RSema); }
void GUI_X_Unlock(void) { OS_Unuse(&_RSema); }
void GUI_X_Lock(void) { OS_Use(&_RSema); }
U32 GUI_X_GetTaskId(void) { return (U32)OS_GetTaskID(); }

void GUI_X_WaitEvent(void) {
 _pGUITask = OS_GetpCurrentTask();
 OS_WaitEvent(1);
}

void GUI_X_SignalEvent(void) {
 if (_pGUITask) {
 OS_SignalEvent(1, _pGUITask);
 }
}

Kernel interface routines for uC/OS
The following example shows an adaption for uC/OS (excerpt from file GUI_X_uCOS.c
located in the folder Sample\GUI_X):

#include "INCLUDES.H"

static OS_EVENT * pDispSem;
static OS_EVENT * pGUITask;

U32 GUI_X_GetTaskId(void) { return ((U32)(OSTCBCur->OSTCBPrio)); }
void GUI_X_Unlock(void) { OSSemPost(pDispSem); }
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

175
void GUI_X_InitOS(void) {
 pDispSem = OSSemCreate(1);
 pGUITask = OSSemCreate(0);
}

void GUI_X_Lock(void) {
 INT8U err;
 OSSemPend(pDispSem, 0, &err);
}

Kernel interface routines for Win32
The following is an excerpt from the Win32 simulation for emWin. (When using the
emWin simulation, there is no need to add these routines, as they are already in the
library.)
Note: cleanup code has been omitted for clarity.

/***
*
* emWin - Multitask inteface for Win32
*
**

 The folling section consisting of 4 routines is used to make
 emWin thread safe with WIN32
*/

static HANDLE hMutex;

void GUI_X_InitOS(void) {
 hMutex = CreateMutex(NULL, 0, "emWinSim - Mutex");
}

unsigned int GUI_X_GetTaskId(void) {
 return GetCurrentThreadId();
}

void GUI_X_Lock(void) {
 WaitForSingleObject(hMutex, INFINITE);
}

void GUI_X_Unlock(void) {
 ReleaseMutex(hMutex);
}

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

176 CHAPTER 11 Execution Model: Single Task / Multitask
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

177
Chapter 12

Virtual screen / Virtual pages
A virtual screen means a display area greater than the physical size of the display. It
requires additional video memory and allows instantaneous switching between differ-
ent screens even on slow CPUs. The following chapter shows
� the requirements for using virtual screens,
� how to configure emWin
� and how to take advantage of virtual screens.
If a virtual display area is configured, the visible part of the display can be changed
by setting the origin.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

178 CHAPTER 12 Virtual screen / Virtual pages
12.1 Introduction

The virtual screen support of emWin can be used for panning or for switching
between different video pages.

Panning
If the application uses one screen which is larger than the display, the virtual screen
API functions can be used to make the desired area visible.

Virtual pages
Virtual pages are a way to use the display RAM as multiple pages. If an application
for example needs 3 different screens, each screen can use its own page in the dis-
play RAM. In this case, the application can draw the second and the third page before
they are used. After that the application can switch very fast between the different
pages using the virtual screen API functions of emWin. The only thing the functions
have to do is setting the right display start address for showing the desired screen.
In this case the virtual Y-size typically is a multiple of the display size in Y.

12.2 Requirements
The virtual screen feature requires hardware with more display RAM than required for
a single screen and the ability of the hardware to change the start position of the dis-
play output.

Video RAM
The used display controller should support video RAM for the virtual area. For exam-
ple if the display has a resolution of 320x240 and a color depth of 16 bits per pixel
and 2 screens should be supported, the required size of the video RAM can be calcu-
lated as follows:

Size = LCD_XSIZE * LCD_YSIZE * LCD_BITSPERPIXEL / 8 * NUM_SCREENS
Size = 320 x 240 x 16 / 8 x 2
Size = 307200 Bytes

Visible area
(virtual page 0)

LCD_XSIZE

LC
D

_Y
S

IZ
E

LC
D

_V
Y

S
IZ

E

Virtual page 1

Virtual page 2

Virtual pages

Virtual area

Visible area

LCD_VXSIZE

LCD_XSIZE

LC
D

_Y
S

IZ
E

LC
D

_V
Y

S
IZ

E

Panning
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

179
Configurable display start position
The used display controller needs a configurable display start position. This means
the display driver even has a register for setting the display start address or it has a
command to set the upper left display start position.

12.3 Configuration
The virtual screen support configuration should be done in the file LCDConf.h. The
table below shows all available configuration macros:

LCD_SET_ORG
Description
This macro is used by the display driver to set the display start position of the upper
left corner of the display.

Type
Function replacement.

Prototype
#define LCD_SET_ORG(x, y)

Example
#define LCD_SET_ORG(x, y) SetDisplayOrigin(x, y) /* Function call for setting the
 display start position */

LCD_VXSIZE, LCD_VYSIZE
Description
The virtual screen size is configured by the macros LCD_VXSIZE and LCD_VYSIZE.
LCD_VXSIZE always should be > LCD_XSIZE and LCD_VYSIZE should be > LCD_YSIZE.
If a virtual area is configured the clipping area of emWin depends on the virtual
screen and not on the display size. Drawing operations outside of LCD_XSIZE and
LCD_YSIZE but inside the virtual screen are performed.

Type
Numerical values.

12.3.1 Sample configuration
The following excerpt of the file LCDConf.h shows how to configure emWin for using
a virtual area of 640x480 pixels on a QVGA display with 320x240 pixels:
#define LCD_SET_ORG(x, y) SetDisplayOrigin(x, y) /* Function call for setting the
 display start position */
#define LCD_XSIZE 320 /* X-resolution of LCD */
#define LCD_YSIZE 240 /* Y-resolution of LCD */
#define LCD_VXSIZE 640 /* Virtual X-resolution */
#define LCD_VYSIZE 480 /* Virtual Y-resolution */

Type Macro Default Explanation

F LCD_SET_ORG ---
Macro used to set the display start position of the upper left cor-
ner.

N LCD_VXSIZE LCD_XSIZE Horizontal resolution of virtual display.

N LCD_VYSIZE LCD_YSIZE Vertical resolution of virtual display.

Parameter Meaning

x X position of the visible area.

y Y position of the visible area.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

180 CHAPTER 12 Virtual screen / Virtual pages
12.4 Samples
In the following a few samples are shown to make clear how to use virtual screens
with emWin.

12.4.1 Basic sample
The following sample shows how to use a virtual screen of 128x192 and a display of
128x64 for instantaneous switching between 3 different screens.

Configuration
#define LCD_XSIZE 128
#define LCD_YSIZE 64
#define LCD_VYSIZE 192

Application
 GUI_SetColor(GUI_RED);
 GUI_FillRect(0, 0, 127, 63);
 GUI_SetColor(GUI_GREEN);
 GUI_FillRect(0, 64, 127, 127);
 GUI_SetColor(GUI_BLUE);
 GUI_FillRect(0, 127, 127, 191);
 GUI_SetColor(GUI_WHITE);
 GUI_SetTextMode(GUI_TM_TRANS);
 GUI_DispStringAt("Screen 0", 0, 0);
 GUI_DispStringAt("Screen 1", 0, 64);
 GUI_DispStringAt("Screen 2", 0, 128);
 GUI_SetOrg(0, 64); /* Set origin to screen 1 */
 GUI_SetOrg(0, 128); /* Set origin to screen 2 */

Output
The table below shows the output of the display:

Explanation Display output Contents of virtual area

Before executing

GUI_SetOrg(0, 240)

After executing

GUI_SetOrg(0, 240)

After executing

GUI_SetOrg(0, 480)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

181
12.5 Virtual screen API
The following table lists the available routines of the virtual screen support.

GUI_GetOrg()
Description
Returns the display start position.

Prototype
void GUI_GetOrg(int * px, int * py);

Add. information
The function stores the current display start position into the variables pointed by the
given pointers.

GUI_SetOrg()
Description
Sets the display start position.

Prototype
void GUI_SetOrg(int x, int y);

Routine Explanation

GUI_GetOrg() Returns the display start position.

GUI_SetOrg() Sets the display start position.

Parameter Meaning

px Pointer to variable of type int to store the X position of the display start position.

py Pointer to variable of type int to store the Y position of the display start position.

Parameter Meaning

x New X position of the display start position.

y New Y position of the display start position.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER 12 Virtual screen / Virtual pages
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

183
Page 0

always
"Main screen"

Page 1

always
"Setup" screen

Page 2

used for dif-
ferent screens

Visible screen
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

184 CHAPTER 12 Virtual screen / Virtual pages
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

185
Chapter 13

Keyboard Input
emWin provides support for any kind of keyboards. Any type of keyboard driver is
compatible with emWin.
The software for keyboard input is located in the subdirectory GUI\Core and part of
the basic package.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER 13 Keyboard Input
13.1 Description
A keyboard input device uses ASCII character coding in order to be able to distin-
guish between characters. For example, there is only one "A" key on the keyboard,
but an uppercase "A" and a lowercase "a" have different ASCII codes (0x41 and
0x61, respectively).

emWin predefined character codes
emWin also defines character codes for other "virtual" keyboard operations. These
codes are listed in the table below, and defined in an identifier table in GUI.h. A char-
acter code in emWin can therefore be any extended ASCII character value or any of
the following predefined emWin values.

13.1.1 Driver layer API
The keyboard driver layer handles keyboard messaging functions. These routines
notify the window manager when specific keys (or combinations of keys) have been
pressed or released.
The table below lists the driver-layer keyboard routines in alphabetical order.
Detailed descriptions follow.

GUI_StoreKeyMsg()
Description
Stores the message data (Key, PressedCnt) into the keybord buffer.

Predefined virtual key code Description

GUI_KEY_BACKSPACE Backspace key.

GUI_KEY_TAB Tab key.

GUI_KEY_ENTER Enter/return key.

GUI_KEY_LEFT Left arrow key.

GUI_KEY_UP Up arrow key.

GUI_KEY_RIGHT Right arrow key.

GUI_KEY_DOWN Down arrow key.

GUI_KEY_HOME Home key (move to beginning of current line).

GUI_KEY_END End key (move to end of current line).

GUI_KEY_SHIFT Shift key.

GUI_KEY_CONTROL Control key.

GUI_KEY_ESCAPE Escape key.

GUI_KEY_INSERT Insert key.

GUI_KEY_DELETE Delete key.

Routine Explanation

GUI_StoreKeyMsg() Store a message in a specified key.

GUI_SendKeyMsg() Send a message to a specified key.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

187
Prototype
void GUI_StoreKeyMsg(int Key, int Pressed);

Add. information
This function can be used from an interrupt service routine. The input buffer contains
only one character.

GUI_SendKeyMsg()
Description
Sends the keyboard data to the window with the input focus. If no window has the
input focus, the function GUI_StoreKeyMsg() is called to store the data to the input
buffer.

Prototype
void GUI_SendKeyMsg(int Key, int Pressed);

Add. infoemation
This function should not be called from an interrupt service routine.

13.1.2 Application layer API
The table below lists the application-layer keyboard routines in alphabetical order.
Detailed descriptions follow.

GUI_ClearKeyBuffer()
Description
Clears the key buffer.

Prototype
void GUI_ClearKeyBuffer(void);

Parameter Meaning

Key
May be any extended ASCII character (between 0x20 and 0xFF) or any predefined
emWin character code.

Pressed Key state (see table below).

Permitted values for parameter Pressed

1 Pressed state.

0 Released (unpressed) state.

Parameter Meaning

Key
May be any extended ASCII character (between 0x20 and 0xFF) or any predefined
emWin character code.

Pressed Key state (see GUI_StoreKeyMsg()).

Routine Explanation

GUI_ClearKeyBuffer() Clear the key buffer.

GUI_GetKey() Return the contents of the key buffer.

GUI_StoreKey() Store a key in the buffer.

GUI_WaitKey() Wait for a key to be pressed.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

188 CHAPTER 13 Keyboard Input
GUI_GetKey()
Description
Returns the current contents of the key buffer.

Prototype
int GUI_GetKey(void);

Return value
Codes of characters in key buffer; 0 if no keys in buffer.

GUI_StoreKey()
Description
Stores a key in the buffer.

Prototype
void GUI_StoreKey(int Key);

Add. Information
This function is typically called by the driver and not by the application itself.

GUI_WaitKey()
Description
Waits for a key to be pressed.

Prototype
int GUI_WaitKey(void);

Add. Information
The application is "blocked", meaning it will not return until a key is pressed.

Parameter Meaning

Key
May be any extended ASCII character (between 0x20 and 0xFF) or any predefined
emWin character code.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

189
Chapter 14

Foreign Language Support
Text written in a foreign language like Arabic or Chinese contains characters, which
are normally not part of the fonts shipped with emWin.
This chapter explains the basics like the Unicode standard, which defines all available
characters worldwide and the UTF-8 encoding scheme, which is used by emWin to
decode text with Unicode characters.
It also explains how to enable Arabic language support.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

190 CHAPTER 14 Foreign Language Support
14.1 Unicode
The Unicode standard is a 16-bit character encoding scheme. All of the characters
available worldwide are in a single 16-bit character set (which works globally). The
Unicode standard is defined by the Unicode consortium.
emWin can display individual characters or strings in Unicode, although it is most
common to simply use mixed strings, which can have any number of Unicode
sequences within one ASCII string.

14.1.1 UTF-8 encoding
ISO/IEC 10646-1 defines a multi-octet character set called the Universal Character
Set (UCS) which encompasses most of the world's writing systems. Multi-octet char-
acters, however, are not compatible with many current applications and protocols,
and this has led to the development of a few UCS transformation formats (UTF), each
with different characteristics.
UTF-8 has the characteristic of preserving the full ASCII range, providing compatibil-
ity with file systems, parsers and other software that rely on ASCII values but are
transparent to other values.
In emWin, UTF-8 characters are encoded using sequences of 1 to 3 octets. If the
high-order bit is set to 0, the remaining 7 bits being used to encode the character
value. In a sequence of n octets, n>1, the initial octet has the n higher-order bits set
to 1, followed by a bit set to 0. The remaining bit(s) of that octet contain bits from
the value of the character to be encoded. The following octet(s) all have the higher-
order bit set to 1 and the following bit set to 0, leaving 6 bits in each to contain bits
from the character to be encoded.
The following table shows the encoding ranges:

Encoding example
The text "Halöle" contains ASCII characters and European extensions. The following
hexdump shows this text as UTF-8 encoded text:

48 61 6C C3 B6 6C 65

Programming examples
If we want to display a text containing non-ASCII characters, we can do this by man-
ually computing the UTF-8 codes for the non-ASCII characters in the string.
However, if your compiler supports UTF-8 encoding (Sometimes called multi-byte
encoding), even non-ASCII characters can be used directly in strings.

//
// Example using ASCII encoding:
//
GUI_UC_SetEncodeUTF8(); /* required only once to activate UTF-8*/
GUI_DispString("Hal\xc3\xb6le");

//
// Example using UTF-8 encoding:
//
GUI_UC_SetEncodeUTF8(); /* required only once to activate UTF-8*/
GUI_DispString("Halöle");

14.1.2 Unicode characters
The character output routine used by emWin (GUI_DispChar()) does always take an
unsigned 16-bit value (U16) and has the basic ability to display a character defined
by Unicode. It simply requires a font which contains the character you want to dis-
play.

Character range UTF-8 Octet sequence

0000 - 007F 0xxxxxxx

0080 - 07FF 110xxxxx 10xxxxxx

0800 - FFFF 1110xxxx 10xxxxxx 10xxxxxx
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

191
14.1.3 UTF-8 strings
This is the most recommended way to display Unicode. You do not have to use spe-
cial functions to do so. If UTF-8-encoding is enabled each function of emWin which
handles with strings decodes the given text as UTF-8 text.

14.1.3.1 Using U2C.exe to convert UTF-8 text into "C"-code
The Tool subdirectory of emWin contains the tool U2C.exe to convert UTF-8 text to
"C"-code. It reads an UTF-8 text file and creates a "C"-file with "C"-strings. The fol-
lowing steps show how to convert a text file into "C"-strings and how to display them
with emWin:

Step 1: Creating a UTF-8 text file
Save the text to be converted in UTF-8 format. You can use Notepad.exe to do this.
Load the text under Notepad.exe:

Choose "File/Save As...". The file dialog should contain a combo box to set the
encoding format. Choose "UTF-8" and save the text file.

Step 2: Converting the text file into a "C"-code file
Start U2C.exe. After starting the program you need to select the text file to be con-
verted. After selecting the text file the name of the "C"-file should be selected. Out-
put of U2C.exe:
"Japanese:"
"1 - \xe3\x82\xa8\xe3\x83\xb3\xe3\x82\xb3\xe3\x83\xbc
 "\xe3\x83\x87\xe3\x82\xa3\xe3\x83\xb3\xe3\x82\xb0"
"2 - \xe3\x83\x86\xe3\x82\xad\xe3\x82\xb9\xe3\x83\x88"
"3 - \xe3\x82\xb5\xe3\x83\x9d\xe3\x83\xbc\xe3\x83\x88"
"English:"
"1 - encoding"
"2 - text"
"3 - support"

Step 3: Using the output in the application code
The following sample shows how to display the UTF-8 text with emWin:

#include "GUI.h"

static const char * _apStrings[] = {
 "Japanese:",
 "1 - \xe3\x82\xa8\xe3\x83\xb3\xe3\x82\xb3\xe3\x83\xbc"
 "\xe3\x83\x87\xe3\x82\xa3\xe3\x83\xb3\xe3\x82\xb0",
 "2 - \xe3\x83\x86\xe3\x82\xad\xe3\x82\xb9\xe3\x83\x88",
 "3 - \xe3\x82\xb5\xe3\x83\x9d\xe3\x83\xbc\xe3\x83\x88",
 "English:",
 "1 - encoding",
 "2 - text",
 "3 - support"
};

void MainTask(void) {
 int i;
 GUI_Init();
 GUI_SetFont(&GUI_Font16_1HK);
 GUI_UC_SetEncodeUTF8();
 for (i = 0; i < GUI_COUNTOF(_apStrings); i++) {
 GUI_DispString(_apStrings[i]);
 GUI_DispNextLine();
 }
 while(1) {
 GUI_Delay(500);
 }
}

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER 14 Foreign Language Support
14.1.4 Unicode API
The table below lists the available routines in alphabetical order within their respec-
tive categories. Detailed descriptions of the routines can be found in the sections that
follow.

14.1.4.1 UTF-8 functions

GUI_UC_ConvertUC2UTF8()
Description
Converts the given double byte Unicode string into UTF-8 format.

Prototype
int GUI_UC_ConvertUC2UTF8(const U16 GUI_UNI_PTR * s, int Len,
 char * pBuffer, int BufferSize);

Return value
The function returns the number of bytes written to the buffer.

Add. Information
UTF-8 encoded characters can use up to 3 bytes. To be on the save side the rec-
comended buffer size is: Number of Unicode characters * 3.
If the buffer is not big enough for the whole result, the function returns when the
buffer is full.

GUI_UC_ConvertUTF82UC()
Description
Converts the given UTF-8 string into Unicode format.

Prototype
int GUI_UC_ConvertUTF82UC(const char GUI_UNI_PTR * s, int Len,

Routine Explanation

UTF-8 functions
GUI_UC_ConvertUC2UTF8() Converts a Unicode string into UTF-8 format.

GUI_UC_ConvertUTF82UC() Converts a UTF-8 string into Unicode format.

GUI_UC_Encode() Encodes the given character with the current encoding.

GUI_UC_GetCharCode() Returns the decoded character.

GUI_UC_GetCharSize() Returns the number of bytes used to encode the given character.

GUI_UC_SetEncodeNone() Disables encoding.

GUI_UC_SetEncodeUTF8() Enables UTF-8 encoding.

Double byte functions
GUI_UC_DispString() Displays a double byte string.

Parameter Meaning

s Pointer to Unicode string to be converted.

Len Number of Unicode characters to be converted.

pBuffer Pointer to a buffer to write in the result.

BufferSize Buffer size in bytes.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

193
 U16 * pBuffer, int BufferSize);

Return value
The function returns the number of Unicode characters written to the buffer.

Add. Information
If the buffer is not big enough for the whole result, the function returns when the
buffer is full.

GUI_UC_Encode()

Description
This function encodes a given character with the current encoding settings.

Prototype
int GUI_UC_Encode(char* s, U16 Char);

Return value
The number of bytes stored to the buffer.

Add. Information
The function assumes that the buffer has at least 3 bytes for the result.

GUI_UC_GetCharCode()

Description
This function decodes a character from a given text.

Prototype
U16 GUI_UC_GetCharCode(const char* s);

Return value
The encoded character.

Related topics
GUI_UC_GetCharSize()

GUI_UC_GetCharSize()

Description
This function returns the number of bytes used to encode the given character.

Parameter Meaning

s Pointer to UFT-8 string to be converted.

Len Number of UTF-8 characters to be converted.

pBuffer Pointer to a buffer to write in the result.

BufferSize Buffer size in words.

Parameter Meaning

s Pointer to a buffer to store the encoded character.

Char Character to be encoded.

Parameter Meaning

s Pointer to the text to be encoded.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER 14 Foreign Language Support
Prototype
int GUI_UC_GetCharSize(const char* s);

Return value
Number of bytes used to encode the given character

Add. information
This function is used to determine how much bytes a pointer has to be incremented
to point to the next character. The following example shows how to use the function:

static void _Display2Characters(const char * pText) {
 int Size;
 U16 Character;
 Size = GUI_UC_GetCharSize(pText); /* Size to increment pointer */
 Character = GUI_UC_GetCharCode(pText); /* Get first character code */
 GUI_DispChar(Character); /* Display first character */
 pText += Size; /* Increment pointer */
 Character = GUI_UC_GetCharCode(pText); /* Get next character code */
 GUI_DispChar(Character); /* Display second character */
}

GUI_UC_SetEncodeNone()

Description
Disables character encoding.

Prototype
void GUI_UC_SetEncodeNone(void);

Add. information
After calling this function each byte of a text will be handled as one character. This is
the default behviour of emWin.

GUI_UC_SetEncodeUTF8()

Description
Enables UTF-8 encoding.

Prototype
void GUI_UC_SetEncodeUTF8(void);

Add. information
After calling GUI_UC_SetEncodeUTF8 each string related routine of emWin encodes a
given sting in accordance to the UTF-8 transformation.

14.1.4.2 Double byte functions

GUI_UC_DispString()

Description
This function displays the given double byte string.

Parameter Meaning

s Pointer to the text to be encoded.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

195
Prototype
void GUI_UC_DispString(const U16 GUI_FAR *s);

Add. Information
If you need to display double byte strings you should use this function. Each charac-
ter has to be defined by a 16 bit value.

Parameter Meaning

s Pointer to double byte string.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

196 CHAPTER 14 Foreign Language Support
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

197
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

198 CHAPTER 14 Foreign Language Support
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

199
Chapter 15

Display drivers
A display driver supports a particular family of display controllers (typically LCD con-
trollers) and all displays which are connected to one or more of these controllers. The
driver is essentially generic, meaning it can be configured by modifying the configu-
ration file LCDConf.h. The driver itself does not need to be modified. This file con-
tains all configurable options for the driver including how the hardware is accessed
and how the controller(s) are connected to the display.
This chapter provides an overview of the display drivers available for emWin. It
explains the following in terms of each driver:

� Which LCD controllers can be accessed, as well as supported color depths and
types of interfaces.

� Additional RAM requirements.
� Additional functions.
� How to access the hardware.
� Special configuration switches.
� Special requirements for particular LCD controllers.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER 15 Display drivers
15.1 Available drivers and supported display control-
lers

The following table lists the available drivers and which display controllers are sup-
ported by each:
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

201
Driver
Value for macro
LCD_CONTROLLER

Display Controller
Supported
bits/pixel

LCDLin

1300

1301
1304
1305
1352
1353
1354
1356
1374
1375
1376
1386
3200

32168

Any display controller with linear video memory in
1, 2, 4, 8 and 16 bits/pixel mode such as:
Epson S1D13505
Epson S1D13700 (direct interface)
Epson S1D13706
Epson S1D13715 (direct interface)
Epson S1D13717 (direct interface)
Epson S1D13719 (direct interface)
Epson S1D13711
Epson S2D13705
Epson S2D13A05
Solomon SSD1905
Fujitsu MB86276 (Lime)
Fujitsu MB86290A (Cremson)
Fujitsu MB86291 (Scarlet)
Fujitsu MB86292 (Orchid)
Fujitsu MB86293 (Coral Q)
Fujitsu MB86294 (Coral B)
Fujitsu MB86295 (Coral P)
Toshiba Capricorn 2
Epson S1D13A03, S1D13A04, S1D13A05
Epson S1D13513 (direct interface)
Epson SED1352, S1D13502
Epson SED1353, S1D13503
Epson SED1354, S1D13504
Epson SED1356, S1D13506
Epson SED1374, S1D13704
Epson SED1375, S1D13705
Epson SED1376, S1D13706
Epson SED1386, S1D13806
Any display controller with linear video memory
(ARM or MIPS CPUs such as Sharp LH754xx,
LH79520, Motorola Dragonball or NEC VR4181A)
which should be accessed only in 32 bit mode.
Any display controller with linear video memory
which should be accessed in 8, 16 or 32 bit mode
in dependence of the required operation.

1, 2, 4, 8, 16,
24, 32

LCD667XX

66700
66701
66701
66701
66702
66703
66704
66705
66705
66706
66707
66708
66708
66708
66708
66709
66709
66709
66709
66710
66711
66766
66766
66766
66772
66772
66772
66772
66772
66789

Sharp LR38825
Renesas R63401
Renesas R61509
OriseTech SPFD5420A
Solomon SSD1289
Toshiba JBT6K71
Sharp LCY-A06003
Samsung S6D0129
Renesas R61505
MagnaChip D54E4PA7551
Himax HX8312
Ilitek ILI9320
Ilitek ILI9325
OriseTech SPFD5408
LG Electronics LGDP4531
Novatek NT39122
Sitronix ST7628
Sitronix ST7637
Renesas R61516
Novatek NT7573
Epson S1D13743
Hitachi HD66766
Samsung S6D0110A
Ilitec ILI9161
Hitachi HD66772
Samsung S6D0117
Sitronix ST7712
Himax HX8301
Ilitec ILI9220
Hitachi HD66789

16
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER 15 Display drivers
The basic package contains 2 drivers which don�t support a specific LCD controller.
They can be used as template for a new driver or for measurement purpose:

Selecting a driver
As described in Chapter 17: "Low-Level Configuration", the macro LCD_CONTROLLER
defines the LCD controller used. A controller is specified by its appropriate value,
listed in the table above.
The following sections discuss each of the available drivers individually.

15.2 CPU / Display controller interface
Different display controllers have different CPU interfaces. The most common ones
are the following:
� Full bus interface
� Simple bus interface
� 4 pin SPI interface
� 3 pin SPI interface
� I2C bus interface
Below we explain these interfaces and how to configure them. Note that not all config
macros are always required. For details about which macros are required please take
a look to the driver documentation later in this chapter. The Chapter 17: "Low-Level
Configuration", explains the macros itself.

15.2.1 Full bus interface
Some LCD controllers (especially those for displays with higher resolution) require a
full-address bus, which means they are connected to at least 14 address bits. In a
full bus interface configuration, video memory is directly accessible by the CPU; the
full-address bus is connected to the LCD controller.
The only knowledge required when configuring a full bus interface is information
about the address range (which will generate a CHIP-SELECT signal for the LCD con-
troller) and whether 8- or 16-bit accesses should be used (bus-width to the LCD con-
troller). In other words, you need to know the following:

� Base address for video memory access
� Base address for register access
� Distance between adjacent video memory locations (usually 1/2/4-byte)
� Distance between adjacent register locations (usually 1/2/4-byte)
� Type of access (8/16/32-bit) for video memory
� Type of access (8/16/32-bit) for registers

Driver
Value for macro
LCD_CONTROLLER

LCD Controller
Supported
bits/pixel

LCDTemplate -1

Driver template.
Can be used as a starting point for writing
a new driver.
Part of the basic package

-

LCDNull -2
Empty driver. (Performs no output)
Can be used for measurement purpose.
Part of the basic package.

-

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

203
Typical block diagram for LCD controllers with full bus interface

Macros used by a full bus interface
The following table shows the used hardware access macros:

15.2.2 Simple bus interface
Most LCD controllers for smaller displays (usually up to 240*128 or 320*240) use a
simple bus interface to connect to the CPU. With a simple bus, only one address bit
(usually A0) is connected to the LCD controller. Some of these controllers are very
slow, so that the hardware designer may decide to connect it to input/output (I/O)
pins instead of the address bus.

Typical block diagram for LCD controllers with simple bus interface

8 (16) data bits, one address bit and 2 or 3 control lines are used to connect the CPU
and one LCD controller. Four macros inform the LCD driver how to access each con-
troller used. If the LCD controller(s) is connected directly to the address bus of the
CPU, configuration is simple and usually consists of no more than one line per macro.
If the LCD controller(s) is connected to I/O pins, the bus interface must be simu-
lated, which takes about 5-10 lines of program per macro (or a function call to a rou-
tine which simulates the bus interface). The signal A0 is also called C/D (Command/
Data), D/I (Data/Instruction) or RS (Register select), depending on the display con-
troller.

Macros used by a simple bus interface
The following table shows the used hardware access macros:

Type Macro Explanation

F LCD_READ_MEM Reads the video memory of the LCD controller.

F LCD_WRITE_MEM Writes data to the video memory of the LCD controller.

F LCD_READ_REG Reads the register of the LCD controller.

F LCD_WRITE_REG Writes data to a specified register of the LCD controller.

Type Macro Explanation

F LCD_READ_A0 Reads a byte from LCD controller with A0 - line low.

F LCD_READ_A1 Reads a byte from LCD controller with A0 - line high.

CPU LCD
Controller

D0...D7/D15/D31

A0...An

Control signals

CPU LCD
Controller

D0...D7/D15

A0

Control signals
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

204 CHAPTER 15 Display drivers
15.2.3 4 pin SPI interface
Using a 4 pin SPI interface is very similar to a simple bus interface. To connect a LCD
display using 4 pin SPI interface the lines A0, CLK, DATA, and CS must be connected
to the CPU.

Typical block diagram for LCD controllers with 4 pin SPI interface

Macros used by a 4 pin SPI interface
The following table shows the used hardware access macros:

15.2.4 3 pin SPI interface
Typical block diagram for LCD controllers with 3 pin SPI interface

Macros used by a 3 pin SPI interface
The following table shows the used hardware access macros:

F LCD_WRITE_A0 Writes a byte to LCD controller with A0 - line low.

F LCD_WRITE_A1 Writes a byte to LCD controller with A0 - line high.

F LCD_WRITEM_A1 Writes several bytes to the LCD controller with A0 - line high.

Type Macro Explanation

F LCD_WRITE_A0 Writes a byte to LCD controller with A0 (C/D) - line low.

F LCD_WRITE_A1 Writes a byte to LCD controller with A0 (C/D) - line high.

F LCD_WRITEM_A1 Writes several bytes to the LCD controller with A0 (C/D) - line high.

Type Macro Explanation

F LCD_WRITE Writes a byte to LCD controller.

F LCD_WRITEM Writes several bytes to the LCD controller.

Type Macro Explanation

CPU LCD
Controller

CLK

A0

DATA

CS

CPU LCD
Controller

CLK

DATA

CS
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

205
15.2.5 I2C bus interface
Typical block diagram for LCD controllers with I2C bus interface

Macros used by a 3 pin SPI interface
The following table shows the used hardware access macros:

15.2.6 Non readable displays
Some display controllers with a simple bus interface do not support reading back dis-
play data. Especially displays which are connected via SPI interface often have this
limitation. In this case we recommend using a display data cache. For details how to
enable a display data cache please refer to the detailed driver descriptions later in
this chapter.
On systems with a very small RAM it is sometimes not possible to use a display data
cache. If a display is not readable and a display data cache can not be used some
features of emWin will not work. The list below shows these features:

� Cursors and Sprites
� XOR-operations, required for text cursors in EDIT and MULTIEDIT widgets
� Alpha blending
� Antialiasing

This is valid for all drivers where one data unit (8 or 16 bit) represents one pixel. Dis-
play drivers, where one data unit represents more than one pixel, can not be used if
no display data cache is available and the display is not readable. An example is the
LCDPage1bpp driver where one byte represents 8 pixels.

15.3 Detailed display driver descriptions

15.3.1 LCDLin driver
This driver comes with 3 different variants:

LCDLin driver (32/16/8 bit access)
This variant does not use a fixed kind of memory access. In dependence of the oper-
ation which should be done it chooses the most economic method of memory access.
So this driver should provide the best performance on systems with 32 bit full bus
interface and is the most recommended one for internal display controllers.

Type Macro Explanation

F LCD_READ_A0 Reads a status byte from LCD controller.

F LCD_READ_A1 Reads a data byte from LCD controller.

F LCD_WRITE_A0 Writes a instruction byte to LCD controller.

F LCD_WRITE_A1 Writes a data byte to LCD controller.

F LCD_WRITEM_A1 Writes several data bytes to the LCD controller.

CPU LCD
Controller

DATA

CLK
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER 15 Display drivers
LCDLin driver (32 bit access)
This variant strictly accesses the video RAM in 32 bit units and is also recommended
to be used with internal display controllers. It offers a simmilar performance as the
32/16/8 variant.

LCDLin driver (16/8 bit access)
The least variant accesses the video memory either in 8 bit or in 16 bit units, depen-
dent on the configuration. Using this variant is recommended for external display
controllers with 8- or 16 bit memory access.

15.3.1.1 LCDLin driver (32/16/8 bit access)
This variant of the LCDLin driver accesses the video memory with the most economic
method depending on the required operation. If for example an area should be filled
the driver uses 32 bit access as far as possible. But if for example only a single pixel
should be set in a 16bpp configuration it uses 16 bit access.
This driver can be used with any display controller with linear memory organization
(as described below) and full bus interface. Most controllers for bigger displays and
higher color depth (typically starting at quarter VGA) comply with this requirement
and can therefore be controlled by this driver.

Supported hardware
Controllers
The following table list the supported controllers and their assigned numbers for
LCD_CONTROLLER, as well as the level of support:

Bits per pixel
Currently supported color depths are 16 and 32 bpp.

Interfaces
The driver supports any 32 bit full bus interface.

Display data RAM organization
The display RAM organisation is the same as for the 32 bit variant. For details please
refer to the previous subchapter �LCDLin driver (32 bit access)�.

Additional RAM requirements of the driver
None.

Additional driver functions
None.

Hardware configuration
This driver requires a full bus interface for hardware access as described in Chapter
17: "Low-Level Configuration".

LCD controller Add. info

32168

Any display controller with linear video
memory which should be accessed in 8,
16 or 32 bit mode in dependence of the
required operation.

The LUT (color look up table or palette RAM) is not
handled by the driver. If a LUT mode is used, the
application program is responsible for initialization
of the LUT. LUT support can be added by using the
macro LCD_SET_LUT_ENTRY.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

207
Available configuration macros
The following table lists the macros which must be defined for hardware access:

Additional configuration switches
The following table shows optional configuration switches available for this driver:

LCD_FILL_RECT()
Description
This macro can be used for defining a function which should be called by the display
driver for filling rectangles.

Type
Function replacement.

Prototype
#define LCD_FILL_RECT(x0, y0, x1, y1, Index)

Add. information
If this macro is defined, the driver calls the function defined by this macro instead of
using its own filling routine. Using this macro can make sense if for example a BitBLT
engine should be used for filling instead of the driver internal filling function. Index
values are in the range of 0 - ((1 << LCD_BITS_PER_PIXEL) - 1).

Example
void CustomFillRect(int x0, int y0, int x1, int y1, int Index);

#define LCD_FILL_RECT(x0, y0, x1, y1, Index) CustomFillRect(x0, y0, x1, y1, Index)

15.3.1.2 LCDLin driver (32 bit access)
Generally display controller with linear video memory can be accessed with the LCD-
Lin driver for 8 and 16 bit access and with the LCDLin driver for 32 bit access. If 32
bit access is possible, it is recommended to use the 32 bit driver with the better per-
formance.
This driver can be used with any display controller with linear memory organization
(as described below) and full bus interface (32 bit data bus). Most controllers for big-
ger displays and higher color depth (typically starting at quarter VGA) comply with
this requirement and can therefore be controlled by this driver.

Macro Explanation

LCD_ENDIAN_BIG Should be set to 1 for big endian mode, 0 for little endian mode.

LCD_VRAM_ADR Defines the start address of the video memory.

Macro Explanation

LCD_FILL_RECT
Function replacement macro which defines a function to be called by
the driver for filling rectangles.

LCD_OFF Function replacement macro which switches the LCD off.

LCD_ON Function replacement macro which switches the LCD on.

LCD_SET_LUT_ENTRY Used to set a single lookup table or palette RAM entry.

Parameter Meaning

x0 Leftmost X-position of the rectangle to be filled.

y0 Topmost Y-position of the rectangle to be filled.

x1 Rightmost X-position of the rectangle to be filled.

y1 Bottommost Y-position of the rectangle to be filled.

Index Color index to be used for filling.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

208 CHAPTER 15 Display drivers
Supported hardware
Controllers
The following table list the supported controllers and their assigned numbers for
LCD_CONTROLLER, as well as the level of support:

Bits per pixel
Supported color depths are 1, 2, 4, 8, 16, 24 and 32 bpp.

Interfaces
The driver supports any 32 bit full bus interface.

LCD controller Add. info

3200

Any display controller with linear video
memory in 4, 8 or 16 bits/pixel mode
such as the build in display controller of
Sharp LH754XX, ARM or MIPS CPU�s.

The LUT (color look up table or palette RAM) is not
handled by the driver. If a LUT mode is used, the
application program is responsible for initialization
of the LUT. LUT support can be added by using the
macro LCD_SET_LUT_ENTRY.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

209
Display data RAM organization

The picture above shows the relation between the display memory and the pixels of
the LCD in terms of the color depth and the endian mode.

Little endian video mode
Least significant bits are used and output first. The least significant bits are for the
first (left-most) pixel.

Big endian video mode
Most significant bits are used and output first. The most significant bits are for the
first (left-most) pixel.

Big endian

Little endian

B
I
T
3
1

B
I
T
3
0

B
I
T
2
9

B
I
T
2
8

B
I
T
2
7

B
I
T
2
6

B
I
T
2
5

B
I
T
2
4

B
I
T
2
3

B
I
T
2
2

B
I
T
2
1

B
I
T
2
0

B
I
T
1
9

B
I
T
1
8

B
I
T
1
7

B
I
T
1
6

B
I
T
1
5

B
I
T
1
4

B
I
T
1
3

B
I
T
1
2

B
I
T
1
1

B
I
T
1
0

B
I
T
0
9

B
I
T
0
8

B
I
T
0
7

B
I
T
0
6

B
I
T
0
5

B
I
T
0
4

B
I
T
0
3

B
I
T
0
2

B
I
T
0
1

B
I
T
0
0

B
I
T
3
1

B
I
T
3
0

B
I
T
2
9

B
I
T
2
8

B
I
T
2
7

B
I
T
2
6

B
I
T
2
5

B
I
T
2
4

B
I
T
2
3

B
I
T
2
2

B
I
T
2
1

B
I
T
2
0

B
I
T
1
9

B
I
T
1
8

B
I
T
1
7

B
I
T
1
6

B
I
T
1
5

B
I
T
1
4

B
I
T
1
3

B
I
T
1
2

B
I
T
1
1

B
I
T
1
0

B
I
T
0
9

B
I
T
0
8

B
I
T
0
7

B
I
T
0
6

B
I
T
0
5

B
I
T
0
4

B
I
T
0
3

B
I
T
0
2

B
I
T
0
1

B
I
T
0
0

P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7

Pixel 0 Pixel 1 Pixel 2 Pixel 3

Pixel 0 Pixel 1

P15

P3
1

P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

P3
0

P2
9

P2
8

P2
7

P2
6

P2
5

P2
4

P2
3

P2
2

P2
1

P2
0

P1
9

P1
8

P1
7

P1
6

P1
5

P1
4

P1
3

P1
2

P1
1

P1
0

P9P8P7P6P5P4P3P2P1P0

Pixel 0 Pixel 1

Pixel 0

P 0P 1P 2P 3P 4P 5P 6P 7

Pixel 0Pixel 1Pixel 2Pixel 3

Pixel 0Pixel 1

P15

P31

P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16
P15
P14
P13
P12
P11
P10
P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Pixel 0Pixel 1

Pixel 0

4 bit / pixel

8 bit / pixel

16 bit / pixel

2 bit / pixel

1 bit / pixel

24 bit / pixel

32 bit / pixel

4 bit / pixel

8 bit / pixel

16 bit / pixel

2 bit / pixel

1 bit / pixel

24 bit / pixel

32 bit / pixel
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

210 CHAPTER 15 Display drivers
Additional RAM requirements of the driver
None.

Additional driver functions
None.

Hardware configuration
This driver requires a full bus interface for hardware access as described in Chapter
17: �Low-Level Configuration (LCDConf.h)�.

Available configuration macros
The following table lists the macros which must be defined for hardware access:

Available configuraion routines
The following table lists the available runtime configuration routines:

For more details please refer to 15.4.1 "Display driver API" later in this chapter.

Additional configuration switches
The following table shows optional configuration switches available for this driver:

LCD_FILL_RECT()
Description
This macro can be used for defining a function which should be called by the display
driver for filling rectangles.

Type
Function replacement.

Macro Explanation

LCD_ENDIAN_BIG Should be set to 1 for big endian mode, 0 for little endian mode.

LCD_VRAM_ADR Defines the start address of the video memory.

Routine Explanation

LCD_SetSizeEx() Changes the size of the visible area.

LCD_SetVRAMAddrEx() Changes the video RAM start address.

LCD_SetVSizeEx() Changes the size of the virtual display area.

Macro Explanation

LCD_FILL_RECT
Function replacement macro which defines a function to be called by
the driver for filling rectangles.

LCD_LIN_SWAP Swaps pixels within a byte.

LCD_OFF Function replacement macro which switches the LCD off.

LCD_ON Function replacement macro which switches the LCD on.

LCD_READ_MEM Read the contents of video memory of controller.

LCD_SET_LUT_ENTRY Used to set a single lookup table or palette RAM entry.

LCD_WRITE_MEM Write to video memory of controller.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

211
Prototype
#define LCD_FILL_RECT(x0, y0, x1, y1, Index)

Add. information
If this macro is defined, the driver calls the function defined by this macro instead of
using its own filling routine. Using this macro can make sense if for example a BitBLT
engine should be used for filling instead of the driver internal filling function. Index
values are in the range of 0 - ((1 << LCD_BITS_PER_PIXEL) - 1).

Example
void CustomFillRect(int x0, int y0, int x1, int y1, int Index);

#define LCD_FILL_RECT(x0, y0, x1, y1, Index) CustomFillRect(x0, y0, x1, y1, Index)

LCD_LIN_SWAP()
Description
This macro enables swapping of pixels within one byte.

Type
Numeric.

Prototype
#define LCD_LIN_SWAP

Add. information
Sometimes a display driver like the embedded display driver of the Motorola MX1 has
a different pixel assignment as the default assignment shown under �Display data
RAM organization�. In this case the macro LCD_LIN_SWAP can be used to swap the
pixels within one byte after reading from and before writing to the video RAM.
If the value of the macro is > 0, pixel swapping is activated. The value of
LCD_LIN_SWAP defines the swapping mode. The following table shows the supported
swapping modes in dependence of the defined value:

Example
#define LCD_LIN_SWAP 1

LCD_READ_MEM(), LCD_WRITE_MEM()
The default definitions of these macros are:

Parameter Meaning

x0 Leftmost X-position of the rectangle to be filled.

y0 Topmost Y-position of the rectangle to be filled.

x1 Rightmost X-position of the rectangle to be filled.

y1 Bottommost Y-position of the rectangle to be filled.

Index Color index to be used for filling.

Value Default After swapping

1

2

4

P0P1P2P3P4P5P6P7 P0 P1 P2 P3 P4 P5 P6 P7

P0P1P2P3 P0 P1 P2 P3

P0P1 P0 P1
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER 15 Display drivers
#define LCD_READ_MEM(Off) (*((U32 *)LCD_VRAM_ADR + (U32)Off))
#define LCD_WRITE_MEM(Off, Data) *((U32 *)LCD_VRAM_ADR + (U32)Off) = Data

These macros normally need not to be defined in the configuration file. It makes only
sense to define them, if the memory access should not work as defined like shown
above. In this case these macros can be defined in the configuration file LCDConf.h
instead of the video memory start address.

How to migrate from LCDLin to LCDLin32
The driver for 8 and 16 bit access needs the definition of 2 memory access macros,
LCD_READ_MEM and LCD_WRITE_MEM. The driver for 32 bit access needs the defini-
tion of the display RAM memory address. The following sample shows how to define
the memory access.

Example
Configuration for 16 bit access:
#define LCD_CONTROLLER 1300
#define LCD_READ_MEM(Off) *((U16*)(0xc00000 +(((U32)(Off)) << 1)))
#define LCD_WRITE_MEM(Off,Data) *((U16*)(0xc00000 +(((U32)(Off)) << 1))) = Data

Configuration for 32 bit access:
#define LCD_CONTROLLER 3200
#define LCD_VRAM_ADR 0xc00000

15.3.1.3 LCDLin driver (8 and 16 bit access)
Generally display controller with linear video memory can be accessed with the LCD-
Lin driver for 8 and 16 bit access and with the LCDLin driver for 32 bit access. If 32
bit access is possible, it is recommended to use the 32 bit driver with the better per-
formance.
This driver can be used with any LCD Controller with linear memory organization (as
described below) and full bus interface (8 or 16 bit data bus). Most controllers for
bigger displays and higher color depth (typically starting at quarter VGA) comply with
this requirement and can therefore be controlled by this driver.

Supported hardware
Controllers
The following table list the supported controllers and their assigned numbers for
LCD_CONTROLLER, as well as the level of support:

LCD controller Add. info

1300

Any LCD controller wirth linear memory
and full bus interface, such as:
Epson SED1352, S1D13502
Epson SED1353, S1D13503
Epson S1D13700 (direct interface)
Solomon SSD1905
Fujitsu MB86290A (Cremson)
Fujitsu MB86291 (Scarlet)
Fujitsu MB86292 (Orchid)
Fujitsu MB86293 (Coral Q)
Fujitsu MB86294 (Coral B)
Fujitsu MB86295 (Coral P)

Microcontrollers with built-in LCD control-
lers such as Sharp LH79531

The LUT (color look up table) is not handled by the
driver. If a LUT mode is used (typically 16 or 256
colors), the application program is responsible for
the initialization of the LUT.

1301 Toshiba Capricorn 2
LUT is handled by driver if required
All layers can be supported

1304 Epson S1D13A03, S1D13A04, S1D13A05
LUT is handled by driver if required
2 D Engine supported (BitBLT)

1354 Epson SED1354, S1D13504 LUT is handled by driver if required

1356 Epson SED1356, S1D13506
LUT is handled by driver if required.
2 D Engine supported (BitBLT)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

213
Bits per pixel
Supported color depths are 1, 2, 4, 8 and 16 bpp.

Interfaces
The chips supported by this driver can be interfaced in 8/16-bit parallel (full bus)
modes.
The driver supports both interfaces. Please refer to the respective LCD controller
manual in order to determine if your chip can be interfaced in 8-bit mode.

Built-in LCD controllers
This driver can also be used with built-in LCD controllers. In this case, either 8 or 16
bit access can be selected. It is typically best to use 8 bit access if the built-in LCD
controller operates in an 8-bpp mode and likewise to use 16 bit access if the built-in
LCD-controller operates in a 16-bpp mode.

1374 Epson SED1374, S1D13704 LUT is handled by driver if required
1375 Epson SED1375, S1D13705 LUT is handled by driver if required
1376 Epson SED1376, S1D13706 LUT is handled by driver if required

1386 Epson SED1386, S1D13806
LUT is handled by driver if required
2 D Engine supported (BitBLT)

LCD controller Add. info
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

214 CHAPTER 15 Display drivers
Display data RAM organization

The picture above shows the relation between the display memory and the SEG and
COM lines of the LCD in terms of the color depth.

Additional RAM requirements of the driver
None.

Additional driver functions
None.

Hardware configuration
This driver requires a full bus interface for hardware access as described in Chapter
17: "Low-Level Configuration". The following table lists the macros which must be
defined for hardware access:

Macro Explanation

LCD_READ_MEM Read the contents of video memory of controller.

LCD_READ_REG Read the contents of a configuration register of controller.

LCD_WRITE_MEM Write to video memory (display data RAM) of controller.

LCD_WRITE_REG Write to a configuration register of controller.

D
B
0

D
B
1

D
B
2

D
B
3

D
B
4

D
B
5

D
B
6

D
B
7

D
B
0

D
B
1

D
B
2

D
B
3

D
B
4

D
B
5

D
B
6

D
B
7

COM 0

COM 1

COM n

S
E
G
0

S
E
G
1

S
E
G
2

S
E
G
n

1 bit / pixel

2 bit / pixel SEG
0

SEG
1

SEG
2

SEG
n

4 bit / pixel SEG 0 SEG 1 SEG 2 SEG n

8 bit / pixel SEG 0 SEG n

16 bit / pixel SEG 0

.

.

.

. . .

. . .

. . .

. . .

H-Byte L-Byte

L-Byte H-Byte

16 bit databus
not swapped

16 bit databus
swapped

Byte order

Display
mode

Byte8 bit databus

.

.

.

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

215
Additional configuration switches
The following table shows optional configuration switches available for this driver:

Additional info for S1D13A03, S1D13A04 and S1D13A05
LCD_CNF4
The configuration switch LCD_CNF4 configures the endian mode selection. If the CNF4
pin of the controller is configured as high the macro should be 1, if the pin is low it
should be 0 (default). To set the endian mode to big endian the following line should
be added to LCDConf.h:
#define LCD_CNF4 (1) /* Selects the big endian mode */

Additional info for S1D13806, S1D13A03, S1D13A04 and S1D13A05
LCD_SWAP_RB
The configuration switch LCD_SWAP_RB (swaps the red and blue components) must be
activated (set to 1) by inserting the following line into LCDConf.h:
#define LCD_SWAP_RB (1) /* Has to be set */

LCD_X_InitController()
When writing or modifying the initialization macro, consider the following:
� To initialize the embedded SDRAM, bit 7 of register 20 (SDRAM initialization bit)

must be set to 1 (a minimum of 200 µs after reset).
� When the SDRAM initialization bit is set, the actual initialization sequence occurs

at the first SDRAM refresh cycle. The initialization sequence requires approxi-
mately 16 MCLKs to complete, and memory accesses cannot be made while the
initialization is in progress.

For more information, please see the LCD controller documentation.

LCD_READ_REG, LCD_WRITE_REG
In order for the BitBLT engine to work, the data type of the offset must be unsigned
long. This is set with the configuration macros LCD_READ_REG and LCD_WRITE_REG as
follows:
#define LCD_READ_REG(Off) *((volatile U16*)(0x800000+(((U32)(Off))<<1)))
#define LCD_WRITE_REG(Off,Data) *((volatile U16*)(0x800000+(((U32)(Off))<<1)))=Data

Macro Explanation

LCD_BUSWIDTH Select bus-width (8/16) of LCD controller/CPU interface. Default is 16.

LCD_CNF4 Endian mode selection for S1D13A03-A05 controllers. Default is 0.

LCD_ENABLE_MEM_ACCESS
Switch the M/R signal to memory access. Only used for S1D13506 and
S1D13806 LCD controllers.

LCD_ENABLE_REG_ACCESS
Switch the M/R signal to register access. Only used for S1D13506 and
S1D13806 LCD controllers.

LCD_FILL_RECT
Function replacement macro which defines a function to be called by
the driver for filling rectangles. For details please refer to LCDLin-driver
(32 bit access).

LCD_ON Function replacement macro which switches the LCD on

LCD_OFF Function replacement macro which switches the LCD off

LCD_SET_LUT_ENTRY
Function replacement macro used to set a single lookup table or palette
RAM entry.

LCD_SWAP_BYTE_ORDER
Inverts the endian mode (swaps the high and low bytes) between CPU
and LCD controller when using a 16-bit bus interface.

LCD_USE_BITBLT
If set to 0, it disables the BitBLT engine. If set to 1 (the default value),
the driver will use all available hardware acceleration.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

216 CHAPTER 15 Display drivers
15.3.2 LCD667XX driver

Supported hardware
Controllers
This driver works with the following display controllers:
� Epson S1D13743
� Himax HX8301, HX8312
� Hitachi HD66766, HD66789, HD66772
� Ilitek ILI9320, ILI9325, ILI9220, ILI9161
� LG Electronics LGDP4531
� MagnaChip D54E4PA7551
� Novatek NT39122, NT7573
� OriseTech SPFD5408, SPFD5420A
� Renesas R63401, R61509, R61516, R61505
� Samsung S6D0129, S6D0110A, S6D0117
� Sitronix ST7628, ST7712, ST7637
� Sharp LR38825, LCY-A06003
� Solomon SSD1289
� Toshiba JBT6K71

Bits per pixel
Supported color depth is 16 bpp.

Interfaces
The driver supports 8-bit parallel, 16 bit parallel and 3 pin SPI interface. Default
mode is 8-bit parallel.

Display data RAM organization

The picture above shows the relation between the display memory and the SEG and
COM lines of the LCD.

Additional RAM requirements
This LCD driver can be used with and without a display data cache, containing a com-
plete copy of the contents of the LCD data RAM. The amount of memory used by the
cache is: LCD_XSIZE x LCD_YSIZE x 2 bytes. Using a cache is only recommended if a
lot of drawing operations uses the XOR drawing mode. A cache would avoid reading
the display data in this case. Normally the use of a cache is not recommended.

D
B
0

D
B
1

D
B
2

D
B
3

D
B
4

D
B
5

D
B
6

D
B
7

SEG0

. . .

COM 0

COM 1

COM n

Byte 0 Byte 1 Byte n

.

.

.

16 bits per pixel, fixed palette = 565

G G GG GG

R R R R R G G G G G G B B B B B

D
B
0

D
B
1

D
B
2

D
B
3

D
B
4

D
B
5

D
B
6

D
B
7

B B B BBR R RR R
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

217
The driver can be used with a write buffer used for drawing multiple pixels of the
same color. If multiple pixels of the same color should be drawn the driver first fills
the buffer and then executes only one time the macro LCD_WRITEM_A1 to transfer
the data to the display controller. The default buffer size is 500 bytes.

Additional driver functions
None.

Hardware configuration
This driver accesses the hardware with a simple bus interface or with a 3 pin SPI
interface. The following table lists the macros which must be defined for hardware
access:

The driver initializes the �Driver Output Mode� and �Entry Mode� register itself. The
user does not need to initialize this registers in LCD_X_InitController().

Additional configuration switches
None.

Special requirements
None.

15.3.3 LCDTemplate driver
This driver is part of the basic package and can be easily adapted to each display
controller. It contains the complete functionality needed for a display driver.

Adapting the template driver
To adapt the driver to a currently not supported display controller you only have to
adapt the routines LCD_L0_SetPixelIndex() and LCD_L0_GetPixelIndex(). The
upper layers calling this routines makes sure that the given coordinates are in range,
so that no check on the parameters needs to be performed.

Macro Explanation

LCD_NUM_DUMMY_READS

Number of required dummy reads if a read operation should be exe-
cuted. The default value is 2. If using a serial interface the display con-
trollers HD66766 and HD66772 need 5 dummy reads. Sharp LR38825
needs 3 dummy reads with a 8-bit bus.

LCD_REG01

This macro is only required if a Himax HX8312A is used. Unfortunately
the register 0x01 (Control register 1) contains orientation specific set-
tings as well as common settings. So this macro should contain the con-
tents of this register.

LCD_SERIAL_ID
With a serial interface this macro defines the ID signal of the device ID
code. It should be 0 (default) or 1.

LCD_USE_SERIAL_3PIN Should be set to 1 if the serial interface is used. Default is 0.

LCD_USE_PARALLEL_16 Should be set to 1 if the 16 bit parallel interface is used. Default is 0.

LCD_WRITE_BUFFER_SIZE

Defines the size of the write buffer. Using a write buffer increases the
performance of the driver. If multiple pixels should be written with the
same color, the driver first fills the buffer and then writes the contents
of the buffer with one execution of the macro LCD_WRITEM_A1, instead
of multiple macro executions. The default buffer size is 500 bytes.

LCD_WRITE_A0 Write a byte to display controller with RS-line low.

LCD_WRITE_A1 Write a byte to display controller with RS-line high.

LCD_READM_A1
Read multiple bytes (8 bit parallel interface) or multiple words (16 bit
parallel interface) from display controller with RS-line high.

LCD_WRITEM_A1
Write multiple bytes (8 bit parallel interface) or multiple words (16 bit
parallel interface) to display controller with RS-line high.

LCD_WRITEM_A0
Write multiple bytes (8 bit parallel interface) or multiple words (16 bit
parallel interface) to display controller with RS-line low.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

218 CHAPTER 15 Display drivers
If a display is not readable the function LCD_L0_GetPixelIndex() won�t be able to
read back the contents of the display data RAM. In this case a display data cache
should be implemented in the driver, so that the contents of each pixel is known by
the driver. If no data cache is available in this case some functions of emWin will not
work right. These are all functions which need to invert pixes. Especially the XOR
draw mode and the drawing of text cursors (which also uses the XOR draw mode) will
not work right. A simple application which do not use the XOR draw mode will also
work without adapting the function LCD_L0_SetPixelIndex().
In a second step, a new driver should be modified to use its own number for activa-
tion (LCD_CONTROLLER), and optionally be optimized to improve drawing speed.

15.3.4 LCDNull driver
This driver is part of the basic package and can be used for measurement purpose. It
contains all API functions of a LCD driver without any function.

Using this driver
Since the driver contains only �empty� API functions it makes it possible to measure
the time difference used for some GUI-operations between using the real hardware
driver and this empty driver. The time difference is the time used for the LCD display
operation.

15.4 LCD layer and display driver API
emWin requires a driver for the hardware. This chapter explains what an LCD driver
for emWin does and what routines it supplies to emWin (the application program
interface, or API).
Under most circumstances, you probably do not need to read this chapter, as most
calls to the LCD layer of emWin will be done through the GUI layer. In fact, we rec-
ommend that you only call LCD functions if there is no GUI equivalent (for example,
if you wish to modify the lookup table of the LCD controller directly). The reason for
this is that LCD driver functions are not thread-safe, unlike their GUI equivalents.
They should therefore not be called directly in multitask environments.

15.4.1 Display driver API
The table below lists the available emWin LCD-related routines in alphabetical order.
Detailed descriptions of the routines can be found in the sections that follow.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

219
LCD_L0: Driver routines

User defined routines

LCD: LCD layer routines

Routine Explanation

Init & display control group
LCD_L0_Init() Initialize the display.

LCD_L0_Off() Switch LCD off.

LCD_L0_On() Switch LCD on.

Drawing group
LCD_L0_DrawBitmap() Universal draw bitmap routine.

LCD_L0_DrawHLine() Draw a horizontal line.

LCD_L0_DrawPixel() Draw a pixel in the current foreground color.

LCD_L0_DrawVLine() Draw a vertical line.

LCD_L0_FillRect() Fill a rectangular area.

LCD_L0_SetPixelIndex() Draw a pixel in a specified color.

LCD_L0_XorPixel() Invert a pixel.

"Get" group
LCD_L0_GetPixelIndex() Returs the index of the color of a specific pixel.

"Set" group
LCD_L0_SetOrg() Sets the origin of the upper left corner.

Lookup table group
LCD_L0_SetLUTEntry() Modifiy a single entry of LUT.

Misc. group (optional)
LCD_L0_ControlCache() Lock/unlock/flush LCD cache.

Routine Explanation

LCD_X_InitController() Called by the display driver to get the display controller initialized.

Routine Explanation

"Get" group
LCD_GetBitsPerPixel() Return the number of bits per pixel.

LCD_GetBitsPerPixelEx() Returns the number of bits per pixel of given layer/display.

LCD_GetFixedPalette() Return the fixed palette mode.

LCD_GetFixedPaletteEx() Returns the fixed palette mode of given layer/display.

LCD_GetNumColors() Return the number of available colors.

LCD_GetNumColorsEx() Returns the number of available colors of given layer/display.

LCD_GetVXSize() Return virtual X-size of LCD in pixels.

LCD_GetVXSizeEx() Returns virtual X-size of given layer/display in pixels.

LCD_GetVYSize() Return virtual Y-size of LCD in pixels.

LCD_GetVYSizeEx() Returns virtual Y-size of given layer/display in pixels.

LCD_GetXMag() Returns the magnification factor in x.

LCD_GetXMagEx() Returns the magnification factor of given layer/display in x.

LCD_GetXSize() Return physical X-size of LCD in pixels.

LCD_GetXSizeEx() Returns physical X-size of given layer/display in pixels.

LCD_GetYMag() Returns the magnification factor in y.

LCD_GetYMagEx() Returns the magnification factor of given layer/display in y.

LCD_GetYSize() Return physical Y-size of LCD in pixels.

LCD_GetYSizeEx() Returns physical Y-size of given layer/display in pixels.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

220 CHAPTER 15 Display drivers
15.4.2 Driver routines

15.4.2.1 Init & display control group

LCD_L0_Init()
Description
Initializes the LCD using the configuration settings in LCDConf.h. This routine is
called automatically by GUI_Init() if the upper GUI layer is used and therefore
should not need to be called manually.

Prototype
void LCD_L0_Init (void);

LCD_L0_Off(), LCD_L0_On()
Description
Switch the display off or on, respectively.

Prototypes
void LCD_L0_Off(void);
void LCD_L0_On(void);

Add. information
Use of these routines does not affect the contents of the video memory or other set-
tings. You may therefore safely switch off the display and switch it back on without
having to refresh the contents.

15.4.2.2 Drawing group

LCD_L0_DrawBitmap()
Description
Draws a pre-converted bitmap.

Prototype
LCD_L0_DrawBitMap(int x0, int y0,
 int Xsize, int Ysize,
 int BitsPerPixel,
 int BytesPerLine,
 const U8* pData, int Diff,

 const LCD_PIXELINDEX* pTrans);

Parameter Meaning

x0 Upper left X-position of bitmap to draw.

y0 Upper left Y-position of bitmap to draw.

Xsize Number of pixels in horizontal direction.

Ysize Number of pixels in vertical direction.

BitsPerPixel Number of bits per pixel.

BytesPerLine Number of bytes per line of the image.

pData Pointer to the actual image, the data that defines what the bitmap looks like.

Diff Number of pixels to skip from the left side.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

221
LCD_L0_DrawHLine()
Description
Draws a horizontal line one pixel thick, at a specified position using the current fore-
ground color.

Prototype
void LCD_L0_DrawHLine(int x0, int y, int x1);

Add. information
With most LCD controllers, this routine executes very quickly because multiple pixels
can be set at once and no calculations are needed. If it is clear that horizontal lines
are to be drawn, this routine executes faster than the DrawLine routine.

LCD_L0_DrawPixel()
Description
Draws one pixel at a specified position using the current foreground color.

Prototype
void LCD_L0_DrawPixel(int x, int y);

LCD_L0_DrawVLine()
Description
Draws a vertical line one pixel thick, at a specified position using the current fore-
ground color.

Prototype
void LCD_L0_DrawVLine(int x , int y0, int y1);

Add. information
With most LCD-controllers, this routine executes very quickly because multiple pixels
can be set at once and no calculations are needed. If it is clear that horizontal lines
are to be drawn, this routine executes faster than the DrawLine routine.

LCD_L0_FillRect()
Description
Draws a filled rectangle at a specified position using the current foreground color.

Parameter Meaning

x0 Start position of line.

y Y-position of line to draw.

x1 End position of line.

Parameter Meaning

x X-position of pixel to draw.

y Y-position of pixel to draw.

Parameter Meaning

x X-position of line to draw.

y0 Start position of line.

y1 End position of line.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

222 CHAPTER 15 Display drivers
Prototype
void LCD_L0_FillRect(int x0, int y0, int x1, int y1);

LCD_L0_SetPixelIndex()
Description
Draws one pixel using a specified color

Prototype
void LCD_L0_SetPixelIndex(int x, int y, int ColorIndex);

LCD_L0_XorPixel()
Description
Inverts one pixel.

Prototype
void LCD_L0_XorPixel(int x, int y);

15.4.2.3 "Get" group

LCD_L0_GetPixelIndex()
Description
Returns the RGB color index of a specified pixel.

Prototype
int LCD_L0_GetPixelIndex(int x, int y);

Return value
The index of the pixel.

Add. information
For further information see Chapter 10: "Colors".

Parameter Meaning

x0 Upper left X-position.

y0 Upper left Y-position.

x1 Lower right X-position.

y1 Lower right Y-position.

Parameter Meaning

x X-position of pixel to draw.

y Y-position of pixel to draw.

ColorIndex Color to be used.

Parameter Meaning

x X-position of pixel to invert.

y Y-position of pixel to invert.

Parameter Meaning

x X-position of pixel.

y Y-position of pixel.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

223
15.4.2.4 Lookup table (LUT) group

LCD_L0_SetLUTEntry()
Description
Modifies a single entry to the LUT of the LCD controller(s).

Prototype
void LCD_L0_SetLUTEntry(U8 Pos, LCD_COLOR Color;

15.4.2.5 Miscellaneous group

LCD_L0_ControlCache()
Description
Locks, unlocks or flushes the cache. This routine may be used to set the cache to a
locked state, in which all drawing operations on the driver cause changes in the video
memory's cache (in CPU RAM), but do not cause any visible output. Unlocking or
flushing then causes those changes to be written to the display. This can help to
avoid flickering of the display and also accelerate drawing. It does not matter how
many different drawing operations are executed; the changes will all be written to
the display at once. In order to be able to do this, LCD_SUPPORT_CACHECONTROL must
be enabled in the configuration file.

Prototype
U8 LCD_ControlCache(U8 command);

Return value
Information on the state of the cache. Ignore.

Add. information
When the cache is locked, the driver maintains a "hitlist" -- a list of bytes which have
been modified and need to be written to the display. This hitlist uses 1 bit per byte of
video memory.
This is an optional feature which is not supported by all LCD drivers

Example
The code in the following example performs drawing operations on the display which
overlap. In order to accelerate the update of the display and to avoid flickering, the
cache is locked before and unlocked after these operations.

Parameter Meaning

Pos
Position within the lookup table. Should be less than the number of colors, e.g. 0-3
for 2bpp, 0-15 for 4bpp, 0-255 for 8bpp.

Color

24-bit RGB value. The closest value possible will be used for the LUT. If a color LUT is
to be initialized, all 3 components are used. In monochrome modes the green com-
ponent is used, but it is still recommended (for better understanding of the program
code) to set all 3 colors to the same value (such as 0x555555 or 0xa0a0a0).

Parameter Meaning

command
Specify the command to be given to the cache. Use the symbolic values in the table
below.

Permitted values for parameter command

LCD_CC_UNLOCK Set the default mode: cache is transparent.

LCD_CC_LOCK
Lock the cache, no write operations will be performed until
cache is unlocked or flushed.

LCD_CC_FLUSH Flush the cache, writing all modified data to the video RAM.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

224 CHAPTER 15 Display drivers
LCD_ControlCache(LCD_CC_LOCK);

GUI_FillCircle(30,30,20);
GUI_SetDrawMode(GUI_DRAWMODE_XOR);
GUI_FillCircle(50,30,10);
GUI_SetTextMode(GUI_TEXTMODE_XOR);
GUI_DispStringAt("Hello world\n",0,0);
GUI_DrawHLine(16, 5,25);
GUI_DrawHLine(18, 5,25);
GUI_DispStringAt("XOR Text",0,20);
GUI_DispStringAt("XOR Text",0,60);

LCD_ControlCache(LCD_CC_UNLOCK);

15.4.3 Callback routines

LCD_X_InitController()
Description
The function is called by the display controller. The job of the routine is to get the display
controller registers initialized right.

Prototype
void LCD_X_InitController(unsigned LayerIndex);

Add. information
The sample folder contains several samples for a large number of display controllers. This
function replaces the macro LCD_INIT_CONTROLLER which was used in older versions.

15.4.4 LCD layer routines

15.4.4.1 "Get" group

LCD_GetBitsPerPixel()
Description
Returns the number of bits per pixel.

Prototype
int LCD_GetBitsPerPixel(void);

Return value
Number of bits per pixel.

LCD_GetBitsPerPixelEx()
Description
Returns the number of bits per pixel.

Prototype
int LCD_GetBitsPerPixelEx(int Index);

Parameter Meaning

LayerIndex Index of layer to be initialized.

Parameter Meaning

Index Layer index.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

225
Return value
Number of bits per pixel.

LCD_GetFixedPalette()
Description
Returns the fixed palette mode.

Prototype
int LCD_GetFixedPalette(void);

Return value
The fixed palette mode. See Chapter 10: "Colors" for more information on fixed pal-
ette modes.

LCD_GetFixedPaletteEx()
Description
Returns the fixed palette mode.

Prototype
int LCD_GetFixedPaletteEx(int Index);

Return value
The fixed palette mode. See Chapter 10: "Colors" for more information on fixed pal-
ette modes.

LCD_GetNumColors()
Description
Returns the number of currently available colors on the LCD.

Prototype
int LCD_GetNumColors(void);

Return value
Number of available colors

LCD_GetNumColorsEx()
Description
Returns the number of currently available colors on the LCD.

Prototype
U32 LCD_GetNumColorsEx(int Index);

Return value
Number of available colors.

Parameter Meaning

Index Layer index.

Parameter Meaning

Index Layer index.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

226 CHAPTER 15 Display drivers
LCD_GetVXSize(), LCD_GetVYSize()
Description
Returns the virtual X- or Y-size, respectively, of the LCD in pixesl. In most cases, the
virtual size is equal to the physical size.

Prototype
int LCD_GetVXSize(void)
int LCD_GetVYSize(void)

Return value
Virtual X/Y-size of the display.

LCD_GetVXSizeEx(), LCD_GetVYSizeEx()
Description
Returns the virtual X- or Y-size, respectively, of the LCD in pixesl. In most cases, the
virtual size is equal to the physical size.

Prototype
int LCD_GetVXSizeEx(int Index);

int LCD_GetVYSizeEx(int Index);

Return value
Virtual X/Y-size of the display.

LCD_GetXMag(), LCD_GetYMag()
Description
Returns the magnification factor in X- or Y-axis, respectively.

Prototype
int LCD_GetXMag(int Index);
int LCD_GetYMag(int Index);

Return value
Magnification factor in X- or Y-axis.

LCD_GetXMagEx(), LCD_GetYMagEx()
Description
Returns the magnification factor in X- or Y-axis, respectively.

Prototype
int LCD_GetXMagEx(int Index);

Return value
Magnification factor in X- or Y-axis.

Parameter Meaning

Index Layer index.

Parameter Meaning

Index Layer index.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

227
LCD_GetXSize(), LCD_GetYSize()
Description
Returns the physical X- or Y-size, respectively, of the LCD in pixels.

Prototypes
int LCD_GetXSize(void)
int LCD_GetYSize(void)

Return value
Physical X/Y-size of the display.

LCD_GetXSizeEx(), LCD_GetYSizeEx()
Description
Returns the physical X- or Y-size, respectively, of the LCD in pixels.

Prototype
int LCD_GetXSizeEx(int Index);

int LCD_GetYSizeEx(int Index);

Return value
Physical X/Y-size of the display.

Parameter Meaning

Index Layer index.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

228 CHAPTER 15 Display drivers
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

229
Chapter 16

Timing and Execution-Related
Functions
Some widgets, as well as our demonstration code, require time-related functions.
The other parts of the emWin graphic library do not require a time base.
The demonstration code makes heavy use of the routine GUI_Delay(), which delays
for a given period of time. A unit of time is referred to as a tick.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

230 CHAPTER 16 Timing and Execution-Related Functions
16.1 Timing and execution API
The table below lists the available timing- and execution-related routines in alpha-
betical order. Detailed descriptions of the routines follow.

GUI_Delay()
Description
Delays for a specified period of time.

Prototype
void GUI_Delay(int Period);

Add. information
The time unit (tick) is usually milliseconds (depending on GUI_X_ functions).
GUI_Delay() only executes idle functions for the given period. If the window man-
ager is used, the delay time is used for the updating of invalid windows (through exe-
cution of WM_Exec()).
This function will call GUI_X_Delay().

GUI_GetTime()
Description
Returns the current system time.

Prototype
int GUI_GetTime(void);

Return value
The current system time in ticks.

Add. information
This function will call GUI_X_GetTime().

Routine Explanation

GUI_Delay() Delay for a specified period of time.

GUI_GetTime() Return the current system time.

Parameter Explanation

Period Period in ticks until function should return.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

231
Chapter 17

Low-Level Configuration (LCD-
Conf.h)
Before you can use emWin on your target system, you need to configure the software
for your application. Configuring means modifying the configuration (header) files
which usually reside in the (sub)directory Config. We try to keep the configuration
as simple as possible, but there are some configuration macros (in the file LCD-
Conf.h) which you must modify in order for the system to work properly. These
include:

� LCD macros, defining the size of the display as well as optional features (such as
mirroring, etc.)

� LCD controller macros, defining how to access the controller you are using.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

232 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.1 Available configuration macros
The following table shows the available macros used for low-level configuration:

Type Macro Default Explanation

General (required) configuration
S LCD_CONTROLLER --- Select LCD controller.

N LCD_BITSPERPIXEL --- Specify bits per pixel.

S LCD_FIXEDPALETTE ---
Specify fixed palette mode. Set to 0 for a
user-defined color lookup table (then
LCD_PHYSCOLORS must be defined).

N LCD_XSIZE --- Define horizontal resolution of LCD.

N LCD_YSIZE --- Define vertical resolution of LCD.

Initialisation of the controller

F
LCD_INIT_CONTROLLER()
(obsolete)

Initialization sequence for the LCD control-
ler(s). Not applicable with all controllers.

Display orientation
B LCD_MIRROR_X 0 Activate to mirror X-axis.

B LCD_MIRROR_Y 0 Activate to mirror Y-axis.

B LCD_SWAP_XY 0
Activate to swap X- and Y-axes. If set to 0,
SEG lines refer to columns and COM lines
refer to rows.

Color configuration

N LCD_MAX_LOG_COLORS 256
Maximum number of logical colors that the
driver can support in a bitmap. Please note
that a value >256 makes no sense.

A LCD_PHYSCOLORS ---
Defines the contents of the color lookup
table. Only required if
LCD_FIXEDPALETTE is set to 0.

B LCD_PHYSCOLORS_IN_RAM 0
Only relevant if physical colors are defined.
Puts physical colors in RAM, making them
modifiable at run time

B LCD_REVERSE 0
Activate to invert the display at compile
time.

B LCD_REVERS_LUT 0
Activate to initialize the lookup table with
inverted colors at run time.

F LCD_SET_LUT_ENTRY ---
Used to set a single lookup table or palette
RAM entry.

B LCD_SWAP_RB 0
Activate to swap the red and blue compo-
nents.

Magnifying the LCD
N LCD_XMAG<n> 1 Horizontal magnification factor of LCD.

N LCD_YMAG<n> 1 Vertical magnification factor of LCD.

Simple bus interface configuration

F LCD_READ_A0(Result) ---
Read a byte from LCD controller with A-line
low.

F LCD_READ_A1(Result) ---
Read a byte from LCD controller with A-line
high.

F LCD_WRITE_A0(Byte) ---
Write a byte to LCD controller with A-line
low.

F LCD_WRITE_A1(Byte) ---
Write a byte to LCD controller with A-line
high.

F LCD_WRITEM_A1 ---
Write multiple bytes to LCD controller with
A-line high.

Full bus interface configuration

F LCD_READ_MEM(Index) ---
Read the contents of video memory of con-
troller.

F LCD_READ_REG(Index) ---
Read the contents of a configuration register
of controller.

F LCD_WRITE_MEM(Index,Data) ---
Write to video memory (display data RAM)
of controller.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

233
How to configure the LCD
We recommend the following procedure:

1. Make a copy of a configuration file of similar configuration. Several configuration
samples for your particular LCD controller can be found in the folder Sam-
ple\LCDConf\xxx, where xxx is your LCD driver.

2. Configure the bus interface by defining the appropriate simple bus or full bus
macros.

3. Define the size of your LCD (LCD_XSIZE, LCD_YSIZE).
4. Select the controller used in your system, as well as the appropriate bpp and the

palette mode (LCD_CONTROLLER, LCD_BITSPERPIXEL, LCD_FIXEDPALETTE).
5. Configure which common/segment lines are used, if necessary.
6. Test the system.
7. Reverse X/Y if necessary (LCD_REVERSE); go back to step 6 in this case.
8. Mirror X/Y if necessary (LCD_MIRROR_X, LCD_MIRROR_Y); go back to step 6 in this

case.
9. Check all the other configuration switches.
10. Erase unused sections of the configuration.

F LCD_WRITE_REG(Index,Data) ---
Write to a configuration register of control-
ler.

S LCD_BUSWIDTH 16
Select bus-width (8/16) of LCD controller/
CPU interface.

F LCD_ENABLE_REG_ACCESS ---
Switch the M/R signal to register access.
Not applicable with all controllers.

F LCD_ENABLE_MEM_ACCESS ---
Switch the M/R signal to memory access.
Not applicable with all controllers.

B LCD_SWAP_BYTE_ORDER 0

Activate to invert the endian mode (swap
the high and low bytes) between CPU and
LCD controller when using a 16-bit bus
interface.

Virtual display

N LCD_VXSIZE LCD_XSIZE
Horizontal resolution of virtual display. Not
applicable with all drivers.

N LCD_VYSIZE LCD_YSIZE
Vertical resolution of virtual display. Not
applicable with all drivers.

LCD controller configuration: common/segment lines
N LCD_FIRSTSEG<n> 0 LCD controller <n>: first segment line used.

N LCD_FIRSTCOM<n> 0 LCD controller <n>: first common line used.

COM/SEG lookup tables
A LCD_LUT_COM --- COM lookup table for controller.

A LCD_LUT_SEG --- SEG lookup table for controller.

Miscellaneous
N LCD_DIST_NUM_CONTROLLERS 1 Number of LCD controllers used.

B LCD_CACHE 1
Deactivate to disable use of display data
cache, which slows down the speed of the
driver. Not applicable with all drivers.

B LCD_USE_BITBLT 1
Deactivate to disable BitBLT engine. If set to
1, the driver will use all available hardware
acceleration.

B LCD_SUPPORT_CACHECONTROL 0
Activate to enable cache control functions of
LCD_L0_ControlCache() driver API.
Not applicable with all controllers.

N LCD_TIMERINIT0 ---
Timing value used by ISR for displaying
pane 0 when using CPU as controller.

N LCD_TIMERINIT1 ---
Timing value used by ISR for displaying
pane 1 when using CPU as controller.

F LCD_ON ---
Function replacement macro which switches
the LCD on.

F LCD_OFF ---
Function replacement macro which switches
the LCD off.

Type Macro Default Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

234 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.2 General (required) configuration

LCD_CONTROLLER
Description
Defines the LCD controller used.

Type
Selection switch

Add. information
The LCD controller used is designated by the appropriate number. Please refer to
Chapter 15: "LCD Drivers" for more information about available options.

Example
Specifies an Epson SED1565 controller:
#define LCD_CONTROLLER 1565 /* Selects SED 1565 LCD-controller */

LCD_BITSPERPIXEL
Description
Specifies the number of bits per pixel.

Type
Numerical value

LCD_FIXEDPALETTE
Description
Specifies the fixed palette mode.

Type
Selection switch

Add. information
Set the value to 0 to use a color lookup table instead of a fixed palette mode. The
macro LCD_PHYSCOLORS must then be defined.

LCD_XSIZE, LCD_YSIZE
Description
Define the horizontal and vertical resolution (respectively) of the display used.

Type
Numerical values

Add. information
The values are logical sizes; X-direction specifies the direction which is used as the
X-direction by all routines of the LCD driver.
Usually the X-size equals the number of segments.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

235
17.3 Initialisation of the controller

LCD_INIT_CONTROLLER (obsolete)
Description
This macro is no longer required. The display driver calls the function
LCD_X_InitController() for initializing the display controller in case of
LCD_INIT_CONTROLLER is not defined. This is the recommended way because this is
more flexible than using a macro within the driver which needs to be defined before
compiling the driver. To keep compatibility to older versions the macro can be used.
If it is defined the function LCD_X_InitController() is not required.

Type
Function replacement

Add. information
It is executed during the LCD_L0_Init() routines of the driver. Please consult the
data sheet of your controller for information on how to initialize your hardware.

Example
The sample below has been written for and tested with an Epson SED1565 controller
using an internal power regulator.

#define LCD_INIT_CONTROLLER() \
LCD_WRITE_A0(0xe2); /* Internal reset */ \
LCD_WRITE_A0(0xae); /* Display on/off: off */ \
LCD_WRITE_A0(0xac); /* Power save start: static indicator off */ \
LCD_WRITE_A0(0xa2); /* LCD bias select: 1/9 */ \
LCD_WRITE_A0(0xa0); /* ADC select: normal */ \
LCD_WRITE_A0(0xc0); /* Common output mode: normal */ \
LCD_WRITE_A0(0x27); /* V5 voltage regulator: medium */ \
LCD_WRITE_A0(0x81); /* Enter electronic volume mode */ \
LCD_WRITE_A0(0x13); /* Electronic volume: medium */ \
LCD_WRITE_A0(0xad); /* Power save end: static indicator on */ \
LCD_WRITE_A0(0x03); /* static indicator register set: on (constantly on) */ \
LCD_WRITE_A0(0x2F); /* Power control set: booster, regulator and follower off */ \
LCD_WRITE_A0(0x40); /* Display Start Line */ \
LCD_WRITE_A0(0xB0); /* Display Page Address 0 */ \
LCD_WRITE_A0(0x10); /* Display Column Address MSB */ \
LCD_WRITE_A0(0x00); /* Display Column Address LSB */ \
LCD_WRITE_A0(0xaf); /* Display on/off: on */ \
LCD_WRITE_A0(0xe3); /* NOP */
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

236 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.4 Display orientation
There are 8 possible display orientations; the display can be turned 0°, 90°, 180° or
270° and can also be viewed from top or from bottom. The default orientation is 0°
 and top view. These 4 *2 = 8 different display orientations can also be expressed as
a combination of 3 binary switches: X-mirror, Y-mirroring and X/Y swapping.
For this purpose, the binary configuration macros listed below can be used with each
driver in any combination. If your display orientation is o.k. (Text on the display is
readable; i.e. runs from left to right, is not upside-done and not mirrored), none of
the configuration macros for display orientation are required. Otherwise, start by
swapping X/Y if necessary and the mirror the X / Y axis as required or take a look at
the table below which indicates which config switches have to be activated in which
case. The orientation is handled as follows: Mirroring in X and Y first, then swapping
(if selected).
Please note, that if more than one display orientation should be used at runtime, the
multi display / multi layer feature is required.

Display Orientation macros in LCDConf.h

No orientation macro required

Use
#define LCD_MIRROR_X 1

Use
#define LCD_MIRROR_Y 1

Use
#define LCD_MIRROR_X 1
#define LCD_MIRROR_Y 1

Use
#define LCD_SWAP_XY 1

Use
#define LCD_SWAP_XY 1
#define LCD_MIRROR_X 1
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

237
Driver optimizations
We can not optimize all drivers for all possible combinations of orientations and other
config switches. In general, the default orientation is optimized. If you need to use a
driver in an orientation which has not been optimized, please contat us.

LCD_MIRROR_X
Description
Inverts the X-direction (horizontal) of the display.

Type
Binary switch
0: inactive, X not mirrored (default)
1: active, X mirrored

Add. information
If activated: X -> LCD_XSIZE-1-X.
This macro, in combination with LCD_MIRROR_Y and LCD_SWAP_XY, can be used to sup-
port any orientation of the display. Before changing this configuration switch, make
sure that LCD_SWAP_XY is set as required by your application.

LCD_MIRROR_Y
Description
Inverts the Y-direction (vertical) of the display.

Type
Binary switch
0: inactive, Y not mirrored (default)
1: active, Y mirrored

Add. information
If activated: Y -> LCD_YSIZE-1-Y.
This macro, in combination with LCD_MIRROR_X and LCD_SWAP_XY, can be used to sup-
port any orientation of the display. Before changing this configuration switch, make
sure that LCD_SWAP_XY is set as required by your application.

Use
#define LCD_SWAP_XY 1
#define LCD_MIRROR_X 1
#define LCD_MIRROR_Y 1

Use
#define LCD_SWAP_XY 1
define LCD_MIRROR_Y 1

Display Orientation macros in LCDConf.h
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

238 CHAPTER 17 Low-Level Configuration (LCDConf.h)
LCD_SWAP_XY
Description
Swaps the horizontal and vertical directions (orientation) of the display.

Type
Binary switch
0: inactive, X-Y not swapped (default)
1: active, X-Y swapped

Add. information
If set to 0 (not swapped), SEG lines refer to columns and COM lines refer to rows.
If activated: X -> Y.
When changing this switch, you will also have to swap the X-Y settings for the resolu-
tion of the display (using LCD_XSIZE and LCD_YSIZE).

17.5 Color configuration

LCD_MAX_LOG_COLORS
Description
Defines the maximum number of colors supported by the driver in a bitmap. The
maximum number of colors in a palette based bitmap is 256. So a value >256 makes
no sense.

Type
Numerical value (default is 256)

Add. information
If you are using a 4-grayscale LCD, it is usually sufficient to set this value to 4. How-
ever, in this case remember not to try to display bitmaps with more than 4 colors.

LCD_PHYSCOLORS
Description
Defines the contents of the color lookup table, if one is used.

Type
Alias

Add. information
This macro is only required if LCD_FIXEDPALETTE is set to 0. Refer to the color section
for more information.

LCD_PHYSCOLORS_IN_RAM
Description
Puts the contents of the physical color table in RAM if enabled.

Type
Binary switch
0: inactive (default)
1: active

LCD_REVERSE
Description
Inverts the display at compile time.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

239
Type
Binary switch
0: inactive, not reversed (default)
1: active, reversed

LCD_SET_LUT_ENTRY
Description
This macro can be used to set a single LUT entry. If defined the macro will be exe-
cuted each time the GUI needs to set a LUT entry (typically during the initialisation).

Type
Function replacement

Prototype
#define LCD_SET_LUT_ENTRY(Pos, Color)

LCD_SWAP_RB
Description
Swaps the red and blue color components.

Type
Binary switch
0: inactive, not swapped (default)
1: active, swapped

17.6 Simple bus interface configuration

17.6.1 Macros used by a simple bus interface
The following macros are used for LCD controllers with simple bus interface.

LCD_READ_A0
Description
Reads a byte from LCD controller with A0 (C/D) - line low.

Type
Function replacement

Prototype
#define LCD_READ_A0(Result)

LCD_READ_A1
Description
Reads a byte from LCD controller with A0 (C/D) - line high.

Parameter Meaning

Pos Zero based index of LUT entry to be set.

Color RGB value of color to be set.

Parameter Meaning

Result
Result read. This is not a pointer, but a placeholder for the variable in which the
value will be stored.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

240 CHAPTER 17 Low-Level Configuration (LCDConf.h)
Type
Function replacement

Prototype
#define LCD_READ_A1(Result)

LCD_WRITE_A0
Description
Writes a byte to LCD controller with A0 (C/D) - line low.

Type
Function replacement

Prototype
#define LCD_WRITE_A0(Byte)

LCD_WRITE_A1
Description
Writes a byte to LCD controller with A0 (C/D) - line high.

Type
Function replacement

Prototype
#define LCD_WRITE_A1(Byte)

LCD_WRITEM_A1
Description
Writes several bytes to the LCD controller with A0 (C/D) - line high.

Type
Function replacement

Prototype
#define LCD_WRITEM_A1(paBytes, NumberOfBytes)

17.6.2 Example of memory mapped interface
The following example demonstrates how to access the LCD by a memory mapped
interface:

Parameter Meaning

Result
Result read. This is not a pointer, but a placeholder for the variable in which the
value will be stored.

Parameter Meaning

Byte Byte to write.

Parameter Meaning

Byte Byte to write.

Parameter Meaning

paBytes Placeholder for the pointer to the first data byte.

NumberOfBytes Number of data bytes to be written.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

241
void WriteM_A1(char *paBytes, int NummerOfBytes) {
 int i;
 for (i = 0; i < NummerOfBytes; i++) {
 (*(volatile char *)0xc0001) = *(paBytes + i);
 }
}

#define LCD_READ_A1(Result) Result = (*(volatile char *)0xc0000)
#define LCD_READ_A0(Result) Result = (*(volatile char *)0xc0001)
#define LCD_WRITE_A1(Byte) (*(volatile char *)0xc0000) = Byte
#define LCD_WRITE_A0(Byte) (*(volatile char *)0xc0001) = Byte

#define LCD_WRITEM_A1(paBytes, NummerOfBytes) WriteM_A1(paBytes, NummerOfBytes)

17.6.3 Sample routines for connection to I/O pins
Several examples can be found in the folder Sample\LCD_X:

� Port routines for 6800 interface
� Port routines for 8080 interface
� Simple port routines for a serial interface
� Port routines for a simple I2C bus interface

These samples can be used directly. All you need to do is to define the port access
macros listed at the top of each example and to map them in your LCDConf.h in a
similar manner to that shown below:

void LCD_X_Write00(char c);
void LCD_X_Write01(char c);
char LCD_X_Read00(void);
char LCD_X_Read01(void);
#define LCD_WRITE_A1(Byte) LCD_X_Write01(Byte)
#define LCD_WRITE_A0(Byte) LCD_X_Write00(Byte)
#define LCD_READ_A1(Result) Result = LCD_X_Read01()
#define LCD_READ_A0(Result) Result = LCD_X_Read00()

Note that not all LCD controllers handle the A0 or C/D bit in the same way. For exam-
ple, a Toshiba controller requires that this bit be low when accessing data and an
Epson SED1565 requires it to be high.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

242 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.7 3 pin SPI configuration

17.7.1 Macros used by a 3 pin SPI interface
The following macros are used for LCD controllers with 4 pin SPI interface.

LCD_WRITE
Description
Writes a byte to the LCD controller.

Type
Function replacement

Prototype
#define LCD_WRITE(Byte)

LCD_WRITEM
Description
Writes several bytes to the LCD controller.

Type
Function replacement

Prototype
#define LCD_WRITEM(paBytes, NumberOfBytes)

17.7.2 Sample routines for connection to I/O pins
An example can be found in the folder Sample\LCD_X:

� LCD_X_SERIAL.c, port routines for a serial interface

This sample can be used directly. All you need to do is to define the port access mac-
ros listed at the top of the example and to map them in your LCDConf.h in a similar
manner to that shown below:

void LCD_X_Write(char c);
void LCD_X_WriteM(char * pData, int NumBytes);
#define LCD_WRITE(Byte) LCD_X_Write(Byte)
#define LCD_WRITEM(data, NumBytes) LCD_X_WriteM(data, NumBytes)

Parameter Meaning

Byte Byte to write.

Parameter Meaning

paBytes Placeholder for the pointer to the first data byte.

NumberOfBytes Number of data bytes to be written.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

243
17.8 4 pin SPI configuration

17.8.1 Macros used by a 4 pin SPI interface
The following macros are used for LCD controllers with 4 pin SPI interface.

LCD_WRITE_A0
Description
Writes a byte to LCD controller with A0 - line low.

Type
Function replacement

Prototype
#define LCD_WRITE_A0(Byte)

LCD_WRITE_A1
Description
Writes a byte to LCD controller with A0 - line high.

Type
Function replacement

Prototype
#define LCD_WRITE_A1(Byte)

LCD_WRITEM_A1
Description
Writes several bytes to the LCD controller with A0 - line high.

Type
Function replacement

Prototype
#define LCD_WRITEM_A1(paBytes, NumberOfBytes)

17.8.2 Sample routines for connection to I/O pins
An example can be found in the folder Sample\LCD_X:

� LCD_X_SERIAL.c, port routines for a serial interface

This sample can be used directly. All you need to do is to define the port access mac-
ros listed at the top of the example and to map them in your LCDConf.h in a similar
manner to that shown below:

Parameter Meaning

Byte Byte to write.

Parameter Meaning

Byte Byte to write.

Parameter Meaning

paBytes Placeholder for the pointer to the first data byte.

NumberOfBytes Number of data bytes to be written.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

244 CHAPTER 17 Low-Level Configuration (LCDConf.h)
void LCD_X_Write00(char c);
void LCD_X_Write01(char c);
void LCD_X_WriteM01(char * pData, int NumBytes);
#define LCD_WRITE_A0(Byte) LCD_X_Write00(Byte)
#define LCD_WRITE_A1(Byte) LCD_X_Write01(Byte)
#define LCD_WRITEM_A1(data, NumBytes) LCD_X_WriteM01(data, NumBytes)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

245
17.9 I2C bus interface configuration

17.9.1 Macros used by a I2C bus interface
The following macros are used for LCD controllers with I2C bus interface.

LCD_READ_A0
Description
Reads a status byte from LCD controller.

Type
Function replacement

Prototype
#define LCD_READ_A0(Result)

LCD_READ_A1
Description
Reads a data byte from LCD controller.

Type
Function replacement

Prototype
#define LCD_READ_A1(Result)

LCD_WRITE_A0
Description
Writes a instruction byte to LCD controller.

Type
Function replacement

Prototype
#define LCD_WRITE_A0(Byte)

LCD_WRITE_A1
Description
Writes a data byte to LCD controller.

Type
Function replacement

Parameter Meaning

Result
Result read. This is not a pointer, but a placeholder for the variable in which the
value will be stored.

Parameter Meaning

Result
Result read. This is not a pointer, but a placeholder for the variable in which the
value will be stored.

Parameter Meaning

Byte Byte to write.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

246 CHAPTER 17 Low-Level Configuration (LCDConf.h)
Prototype
#define LCD_WRITE_A1(Byte)

LCD_WRITEM_A1
Description
Writes several data bytes to the LCD controller.

Type
Function replacement

Prototype
#define LCD_WRITEM_A1(paBytes, NumberOfBytes)

17.9.2 Sample routines for connection to I/O pins
An example can be found in the folder Sample\LCD_X:

� LCD_X_I2CBUS.c, port routines for a serial interface

This sample can be used directly. All you need to do is to define the port access mac-
ros listed at the top of the example and to map them in your LCDConf.h in a similar
manner to that shown below:

void LCD_X_Write00(char c);
void LCD_X_Write01(char c);
char LCD_X_Read00(void);
char LCD_X_Read01(void);
#define LCD_WRITE_A1(Byte) LCD_X_Write01(Byte)
#define LCD_WRITE_A0(Byte) LCD_X_Write00(Byte)
#define LCD_READ_A1(Result) Result = LCD_X_Read01()
#define LCD_READ_A0(Result) Result = LCD_X_Read00()

Parameter Meaning

Byte Byte to write.

Parameter Meaning

paBytes Placeholder for the pointer to the first data byte.

NumberOfBytes Number of data bytes to be written.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

247
17.10 Full bus interface configuration

17.10.1 Macros used by a full bus interface
The following macros are used for LCD controllers with a full bus interface.

LCD_READ_MEM
Description
Reads the video memory of the LCD controller.

Type
Function replacement

Prototype
#define LCD_READ_MEM(Index)

Add. information
This macro defines how to read the video memory of the LCD controller.
In order to configure this switch correctly, you need to know the base address of the
video memory, the spacing and if 8/16- or 32-bit accesses are permitted. You should
also know the correct syntax for your compiler because this kind of hardware access
is not defined in ANSI "C" and is therefore different for different compilers.

LCD_READ_REG
Description
Reads the register of the LCD controller.

Type
Function replacement

Prototype
#define LCD_READ_REG(Index)

Add. information
This macro defines how to read the registers of the LCD controller. Usually, the regis-
ters are memory-mapped. In this case, the macro can normally be written as a single
line.
In order to configure this switch correctly, you need to know the address the regis-
ters are mapped to, the spacing and if 8/16- or 32-bit accesses are permitted. You
should also know the correct syntax for your compiler because this kind of hardware
access is not defined in ANSI "C" and is therefore different for different compilers.
However, the syntax shown below works with the majority of them.

Example
If the registers are mapped to a memory area starting at 0xc0000, the spacing is 2
and 16-bit accesses should be used; with most compilers the define should look as
follows:
#define LCD_READ_REG(Index) *((U16*)(0xc0000+(Off<<1)))

Parameter Meaning

Index Index of video memory of controller.

Parameter Meaning

Index Index of the register to read.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

248 CHAPTER 17 Low-Level Configuration (LCDConf.h)
LCD_WRITE_MEM
Description
Writes data to the video memory of the LCD controller.

Type
Function replacement

Prototype
LCD_WRITE_MEM(Index, Data)

Add. information
This macro defines how to write to the video memory of the LCD controller.
In order to configure this switch correctly, you need to know the base address of the
rvideo memory, the spacing and if 8/16- or 32-bit accesses are permitted, as well as
the correct syntax for your compiler.
With 8-bit accesses, a value of 1 indicates byte 1.
With 16-bit accesses, a value of 1 indicates word 1.

LCD_WRITE_REG
Description
Writes data to a specified register of the LCD controller

Type
Function replacement

Prototype
LCD_WRITE_REG(Index, Data)

Add. information
This macro defines how to write to the registers of the LCD controller. If the registers
are memory-mapped, the macro can normally be written as a single line.
In order to configure this switch correctly, you need to know the address the regis-
ters are mapped to, the spacing and if 8/16- or 32-bit accesses are permitted, as well
as the correct syntax for your compiler.
With 8-bit accesses, a value of 1 indicates byte 1.
With 16-bit accesses, a value of 1 indicates word 1.

Example
If the registers are mapped to a memory area starting at 0xc0000, the spacing is 4
and 8-bit access should be used; with most compilers the define should look as fol-
lows:
#define LCD_WRITE_REG(Index,Data) *((U8volatile *)(0xc0000+(Off<<2)))=data

LCD_BUSWIDTH
Description
Defines bus-width of LCD controller/CPU interface (external display access).

Parameter Meaning

Index Index of video memory of controller.

Data Data to write to the register

Parameter Meaning

Index Index of the register to write to

Data Data to write to the register
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

249
Type
Selection switch
8: 8-bit wide VRAM
16: 16-bit wide VRAM (default)

Add. information
Since this completely depends on your hardware, you will have to substitute these
macros. The Epson SED1352 distinguishes between memory and register access;
memory is the video memory of the LCD controller and registers are the 15 configu-
ration registers. The macros define how to access (read/write) VRAM and registers.

LCD_ENABLE_REG_ACCESS
Description
Enables register access and sets the M/R signal to high.

Type
Function replacement

Prototype
#define LCD_ENABLE_REG_ACCESS() MR = 1

Add. Information
Only used for Epson SED1356 and SED1386 controllers.
After using this macro, LCD_ENABLE_MEM_ACCESS must also to be defined in order to
switch back to memory access after accessing the registers.

LCD_ENABLE_MEM_ACCESS
Description
Switches the M/R signal to memory access. It is executed after register access func-
tions and sets the M/R signal to low.

Type
Function replacement

Prototype
#define LCD_ENABLE_MEM_ACCESS() MR = 0

Add. information
Only used for Epson SED1356 and SED1386 controllers.

LCD_SWAP_BYTE_ORDER
Description
Inverts the endian mode (swaps the high and low bytes) between CPU and LCD con-
troller when using a 16-bit bus interface.

Type
Binary switch
0: inactive, endian modes not swapped (default)
1: active, endian modes swapped

17.10.2 Configuration example
The example assumes the following:

Base address video memory 0x80000
Base address registers 0xc0000
Access to video RAM 16-bit
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

250 CHAPTER 17 Low-Level Configuration (LCDConf.h)
#define LCD_READ_REG(Index) *((U16*)(0xc0000+(Off<<1)))
#define LCD_WRITE_REG(Index,data) *((U16*)(0xc0000+(Off<<1)))=data
#define LCD_READ_MEM(Index) *((U16*)(0x80000+(Off<<1)))
#define LCD_WRITE_MEM(Index,data) *((U16*)(0x80000+(Off<<1)))=data

Access to register 16-bit
Distance between adjacent video memory loca-
tions

2 bytes

Distance between adjacent register locations 2 bytes
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

251
17.11 Virtual display support

LCD_VXSIZE, LCD_VYSIZE
Description
Define the horizontal and vertical resolution (respectively) of the virtual display.

Type
Numerical values

Add. information
The values are logical sizes; X-direction specifies the direction which is used as X-
direction by all routines of the LCD driver.
If a virtual display is not used, these values should be the same as the values for
LCD_XSIZE, LCD_YSIZE (these are the default settings).
The virtual display feature requires hardware support and is not available with all
drivers.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

252 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.12 LCD controller configuration: COM/SEG lines
For most LCDs, the setup of common (COM) and segment (SEG) lines is straightfor-
ward and neither special settings for COM/SEG lines nor the configuration macros in
this section are required. This section explains how the LCD controller(s) is physically
connected to your display. The direction does not matter; it is only assumed that
continuous COM and SEG lines are used. If the direction of SEGs or COMs is reversed,
use LCD_MIRROR_X/LCD_MIRROR_Y to set them in the direction required by your appli-
cation. If non-continuous COM/SEG lines have been used, you have to modify the
driver (putting in a translation table will do) or -- even better -- go back to the hard-
ware (LCD module) designer and ask him/her to start over. The following macros can
be used to configure the COM/SEG lines:

Example
The following block diagram shows a single display, controlled by a single display
controller, using external COM and SEG drivers. All outputs of the common driver
(COM0-COM63) are being used, but only some outputs of the segment driver (SEG4-
SEG91). Note that for simplicity the video RAM is not shown in the diagram.

Configuration for the above example
#define LCD_FIRSTSEG0 4 /* Contr.0: first segment line used */
#define LCD_FIRSTCOM0 0 /* Contr.0: first com line used */

Please also note that the above configuration is identical if the COM or SEG lines are
mirrored and even if the LCD is built-in sideways (90° turned, X-Y swapped). The
same applies if the COM/SEG drivers are integrated into the LCD controller, as is the
case for some controllers designed for small LCDs. A typical example for this type of
controller would be the Epson SED15XX series.

Type Macro Explanation

N LCD_FIRSTSEG0 First segment line used.

N LCD_FIRSTCOM0 First common line used.

LCD
Controller Segment Driver

C
om

m
on

D
riv

er

LCD

88 Pixels horizontal

64
 P

ix
el

s
ve

rti
ca

l

. . .S
E

G
 0

S
E

G
 1

S
E

G
 2

S
E

G
 3

S
E

G
 4

S
E

G
 5

S
E

G
 6

S
E

G
 7

S
E

G
 8

S
E

G
 9

1
S

E
G

 9
0

S
E

G
 8

9

S
E

G
 9

2

S
E

G
 1

21

. .
 .

. . .

COM 0
COM 1
COM 2
COM 3

COM 63
COM 62
COM 61
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

253
17.13 Configuring multiple display controllers
Multiple display controllers (not multiple displays or multiple layers!) are supported
for displays connected by a simple bus interface. If one display is controlled by more
than one controller, emWin uses a distribution layer for accessing the different con-
trollers. This is typically the case for some black/white (1bpp) displays only.
Please note that only one display with more than one display controller can be used
simultaneously.

17.13.1 Macros used by the distribution layer
The following table shows the available macros for configuring the distribution layer:

17.13.2 Hardware access
If more than one controller is used for the display, there must be defined access
macros for each of them individually, according to the hardware. The macros needed
for the additional controllers are very similar to those for the first one. With a direct
bus connection, usually only the addresses are different. When I/O pins are used, the
sequence for the access is the same except for the CHIP-SELECT signal.
When using more than one controller, add a �C� and the index of the controller as the
postfix for controllers > 0.

Example
LCD_WRITE_A1(Byte) /* Write byte to controller 0 with RS line high */
LCD_WRITE_A0(Byte) /* Write byte to controller 0 with RS line low */
LCD_WRITE_A1C1(Byte) /* Write byte to controller 1 with RS line high */
LCD_WRITE_A0C1(Byte) /* Write byte to controller 1 with RS line low */
...

17.13.3 COM/SEG line configuration
The configuration switches are identical to the switches for the first controller (con-
troller 0), except the index is 1, 2 or 3 instead of 0. The following diagram shows a
hardware configuration using two LCD controllers. The COM lines are driven by the
common driver connected to controller 1 and are directly connected to the second
LCD. LCD 1 is connected to segment driver 1 using SEG lines 4 to 91. LCD 2 is driven
by SEG 0 to SEG 87 of segment driver 2.

Type Macro Explanation

N LCD_DIST_NUM_CONTROLLERS Number of available display controllers

A LCD_DIST_DRIVER Name of the display driver to be used

N LCD_DIST_X0_<n> LCD controller 1: leftmost (lowest) X-position.

N LCD_DIST_Y0_<n> LCD controller 1: topmost (lowest) Y-position.

N LCD_DIST_X1_<n> LCD controller 1: rightmost (lowest) X-position.

N LCD_DIST_Y1_<n> LCD controller 1: bottommost (lowest) Y-position.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

254 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.13.4 Configuration example
The following shows a configuration sample for the above case of 2 display control-
lers:

#define LCD_DIST_DRIVER "LCDPage1bpp.c" /* Real display driver to be used */

#define LCD_XSIZE 176 /* Display size in X */
#define LCD_YSIZE 64 /* Display size in Y */

#define LCD_DIST_NUM_CONTROLLERS 2 /* Number of available controllers */

#define LCD_DIST_X0_0 0 /* Leftmost position of area 0 */
#define LCD_DIST_Y0_0 0 /* Topmost position of area 0 */
#define LCD_DIST_X1_0 87 /* Rightmost position of area 0 */
#define LCD_DIST_Y1_0 63 /* Bottommost position of area 0 */

#define LCD_DIST_X0_1 88 /* Leftmost position of area 1 */
#define LCD_DIST_Y0_1 0 /* Topmost position of area 1 */
#define LCD_DIST_X1_1 175 /* Rightmost position of area 1 */
#define LCD_DIST_Y1_1 63 /* Bottommost position of area 1 */

#define LCD_FIRSTSEG0 4 /* Contr.0: first segment line used */
#define LCD_FIRSTCOM0 0 /* Contr.0: first com line used */
#define LCD_FIRSTSEG1 0 /* Contr.1: first segment line used */
#define LCD_FIRSTCOM1 0 /* Contr.1: first com line used */

LCD
Controller 1 Segment Driver 1

C
om

m
on

 D
riv

er
 1

LCD 1

88 Pixels horizontal
64

 P
ix

el
s

ve
rti

ca
l

. . .S
E

G
 4

S
E

G
 5

S
E

G
 6

S
E

G
 7

S
E

G
 8

S
E

G
 9

1
S

E
G

 9
0

S
E

G
 8

9

. .
 .

COM 0
COM 1
COM 2
COM 3

COM 63
COM 62
COM 61

LCD 2

Segment Driver 2

88 Pixels horizontal

. . .S
E

G
 0

S
E

G
 1

S
E

G
 2

S
E

G
 3

S
E

G
 4

S
E

G
 8

7
S

E
G

 8
6

S
E

G
 8

5

LCD
Controller 2

64
 P

ix
el

s
ve

rti
ca

l

User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

255
17.14 COM/SEG lookup tables
When using "chip on glass" technology, it is sometimes very difficult to ensure that
the COM and SEG outputs of the controller(s) are connected to the display in a linear
fashion. In this case a COM/SEG lookup table may be required in order to inform the
driver as to how the COM/SEG lines are connected.

LCD_LUT_COM
Description
Defines a COM lookup table for the controller.

Type
Alias

Example
Let us assume your display contains only 10 COM lines and their connecting order is
0, 1, 2, 6, 5, 4, 3, 7, 8, 9. To configure the LCD driver so that the COM lines are
accessed in the correct order, the following macro should be added to your LCD-
Conf.h:

#define LCD_LUT_COM 0, 1, 2, 6, 5, 4, 3, 7, 8, 9

If you need to modify the segment order, you should use the macro LCD_LUT_SEG in
the same manner.

LCD_LUT_SEG
Description
Defines a SEG lookup table for the controller.

Type
Alias
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

256 CHAPTER 17 Low-Level Configuration (LCDConf.h)
17.15 Miscellaneous

LCD_DIST_NUM_CONTROLLERS
Description
Defines the number of LCD controllers used.

Type
Numerical value (default is 1)

LCD_CACHE
Description
Controls caching of video memory in CPU memory.

Type
Binary switch
0: disabled, no display data cache used
1: enabled, display data cache used (default)

Add. information
This switch is not supported by all LCD drivers.
Using a display data cache (which speeds up access) is recommended if access to the
video memory is slow, which is usually the case with larger displays and simple bus
interfaces (particularly if port-access or serial interfaces are used). Disabling the
cache will slow down the speed of the driver.

LCD_USE_BITBLT
Description
Controls usage of hardware acceleration.

Type
Binary swith
0: disabled, BitBLT engine is not used
1: enabled, BitBLT engine is used (default)

Add. information
Disabling the BitBLT engine will instruct the driver not to use the available hardware
acceleration.

LCD_SUPPORT_CACHECONTROL
Description
Switch support for the LCD_L0_ControlCache() function of the driver.

Type
Binary switch
0: disabled, LCD_L0_ControlCache() may not be used (default)
1: enabled, LCD_L0_ControlCache() may be used

Add. information
The API function LCD_L0_ControlCache() permits locking, unlocking, or flushing of
the cache. Please note that this feature is intended only for some LCD controllers
with simple bus interface, for which it is important to access the controller as little as
possible in order to maximize speed. For other controllers, this switch has no effect.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

257
LCD_TIMERINIT0
Description
Timing value used by an interrupt service routine for displaying pane 0 of a pixel.

Type
Numerical value

Add. information
This macro is only relevant when no LCD controller is used, since it is then the job of
the CPU to update the display in an interrupt service routine.

LCD_TIMERINIT1
Description
Timing value used by an interrupt service routine for displaying pane 1 of a pixel.

Type
Numerical value

Add. information
This macro is only relevant when no LCD controller is used, since it is then the job of
the CPU to update the display in an interrupt service routine.

LCD_ON
Description
Switches the LCD on.

Type
Function replacement

LCD_OFF
Description
Switches the LCD off.

Type
Function replacement
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

258 CHAPTER 17 Low-Level Configuration (LCDConf.h)
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

259
Chapter 18

High-Level Configuration
(GUIConf.h)
High-level configuration is relatively simple. In the beginning, you can normally use
the existing configuration files (for example, those used in the simulation). Only if
there is a need to fine-tune the system, or to minimize memory consumption, does
the high-level configuration file GUIConf.h need to be changed. This file is usually
located in the Config subdirectory of your project�s root directory. Use the file
GUIConf.h for any high-level configuration.
The second thing to do when using emWin on your hardware is to change the hard-
ware-dependent functions, located in the file Sample\GUI_X\GUI_X.c.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

260 CHAPTER 18 High-Level Configuration (GUIConf.h)
18.1 General notes
The configuration options explained in this chapter are the available options for the
general library.

18.2 How to configure the GUI
We recommend the following procedure:

1. Make a copy of the original configuration file.
2. Review all configuration switches.
3. Erase unused sections of the configuration.

18.2.1 Sample configuration
The following is a short sample GUI configuration file:

#define GUI_WINSUPPORT (1) /* Use window manager if true (1) */
#define GUI_SUPPORT_TOUCH (1) /* Support a touch screen */
#define GUI_ALLOC_SIZE 5000 /* Size of dynamic memory */
#define GUI_DEFAULT_FONT &GUI_Font6x8 /* This font is used as default */

18.3 Available GUI configuration macros
The following table shows the available macros used for high-level configuration of
emWin

Type Macro Default Explanation

N
GUI_ALLOC_SIZE
(obsolete)

0

Defines the size (number of bytes avail-
able) for optional dynamic memory.
Dynamic memory is required for windows,
memory devices, image decompression,
antialiasing and alpha blending.

S GUI_DEBUG_LEVEL
1 (target)
4 (simulation)

Defines the debug level, which determines
how many checks (assertions) are per-
formed by emWin and if debug errors,
warnings and messages are output.
Higher debug levels generate bigger code.

N GUI_DEFAULT_BKCOLOR GUI_BLACK Define the default background color.

N GUI_DEFAULT_COLOR GUI_WHITE Define the default foreground color.

S GUI_DEFAULT_FONT &GUI_Font6x8

Define which font is used as default after
GUI_Init(). If you do not use the
default font, it makes sense to change to a
different default, as the default font is ref-
erenced by the code and will therefore
always be linked.

N
GUI_MAXBLOCKS
(obsolete)

Defines the number of available memory
blocks for the memory management of
emWin. The maximum number of blocks
depends per default on
GUI_ALLOC_SIZE.

N GUI_MAXTASK 4

Define the maximum number of tasks from
which emWin is called to access the display
when multitasking support is enabled (see
Chapter 11: "Execution Model: Single Task/
Multitask").

F GUI_MEMCPY ---
This macro allows replacement of the
memcpy function.

F GUI_MEMSET ---
Replacement of the memset function of the
GUI.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

261
18.3.1 GUI_MEMCPY
This macro allows replacement of the memcpy function of the GUI. On a lot of sys-
tems, memcpy takes up a considerable amount of time because it is not optimized by
the compiler manufacturer. emWin contains an alternative memcpy routine, which
has been optimized for 32 bit CPUs. On a lot of systems this routine should generate
faster code than the default memcpy routine. However, this is still a generic "C"-rou-
tine, which in a lot of systems can be replaced by faster code, typically using either a
different "C" routine, which is better optimized for the particular CPU or by writing a
routine in Assembly language.
To use the optimized emWin routine add the following define to the file GUIConf.h:

#define GUI_MEMCPY(pSrc, pDest, NumBytes) GUI__memcpy(pSrc, pDest, NumBytes)

18.3.2 GUI_MEMSET
This macro allows replacement of the memset function of the GUI. On a lot of sys-
tems, memset takes up a considerable amount of time because it is not optimized by
the compiler manufacturer. We have tried to address this by using our own memset()
Routine GUI__memset. However, this is still a generic "C"-routine, which in a lot of
systems can be replaced by faster code, typically using either a different "C" routine,
which is better optimized for the particular CPU, by writing a routine in Assembly lan-
guage or using the DMA.
If you want to use your own memset replacement routine, add the define to the
GUIConf.h file.

18.3.3 GUI_TRIAL_VERSION
This macro can be used to mark the compiler output as an evaluation build. It should
be defined if the software is given to a third party for evaluation purpose (typically
with evaluation boards).
Note that a special license is required to do this; the most common licenses do not
permit redistribution of emWin in source or object code (relinkable) form. Please con-
tact sales@segger.com if you would like to do this.

B GUI_OS 0

Activate to enable multitasking support
with multiple tasks calling emWin (see
Chapter 11: "Execution Model: Single Task/
Multitask").

B GUI_SUPPORT_BIDI 0
Activates the bidirectional language sup-
port required for drawing Arabic and
Hebrew text.

B GUI_SUPPORT_LARGE_BITMAPS 0
If a system with a 16 bit CPU (sizeof(int)
== 2) should display bitmaps >64Kb this
configuration macro should be set to 1.

B GUI_SUPPORT_TOUCH 0

Enables optional touch-screen support. 1
enables the default touch screen support.
2 enables compatibility mode to older ver-
sions without runtime configuration.

B GUI_SUPPORT_UNICODE 1

Enables support for Unicode characters
embedded in 8-bit strings. Please note:
Unicode characters may always be dis-
played, as character codes are always
treated as 16-bit.

B GUI_TRIAL_VERSION 0
Marks the compiler output as evaluation
version.

Type Macro Default Explanation
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

262 CHAPTER 18 High-Level Configuration (GUIConf.h)
If GUI_TRIAL_VERSION is defined, the following message is shown when calling
GUI_Init():

This message is always shown in the upper left corner of the display and is normally
visible for 1 second. The timing is implemented by a call GUI_X_Delay(1000). The
functionality of emWin is in no way limited if this switch is active.

Sample
#define GUI_TRIAL_VERSION 1

18.4 Runtime configuration
The illustration shows the ini-
tialization process of emWin.
From the application only
GUI_Init() needs to be called.
In the following the different
configuration routines which are
called within the initialization
process are explained.

GUI_X_Config()
It is called at the very first beginning of the initialization process to make sure mem-
ory is assigned to emWin. Within this routine GUI_ALLOC_AssignMemory() and
GUI_ALLOC_SetAvBlockSize() must be used to assign a memory block to emWin and
set the average memory block size. The functions are explained later in this chapter.

GUI_X_Init()
This function can be used for initialzing an optional touch screen using the functions
GUI_TOUCH_Calibrate() and GUI_TOUCH_SetOrientation(). It is called immedi-
ately after GUI_X_Config().

LCD_X_InitController()
After the general initialization the callback function LCD_X_InitController() is
called during the initialization process for putting the display into operation. This
function is part of the application and has to make sure that the display controller is
initialized right.

18.4.1 Memory requirements
The following gives a rough overwiev of the memory requirement. The dynamic
memory is used by the window manager/widget library (optional), memory devices
(optional), antialiasing (optional) and alpha blending. The following gives you an
overview of the memory requirements of these modules.

Memory requirement of the window manager
If the window manager is used, approximately 50 bytes are used per application
defined window and approximately 100 bytes per widget. Typical applications using
the window manager/widgets requires app. 2500 bytes.

Memory requirement of the memory devices
Depending on the color depth used one pixel of a memory device requires 1 or 2
bytes of RAM. Configurations with a color depth between 1 and 8bpp
(LCD_BITSPERPIXEL between 1 and 8) uses 1 byte of RAM. A color depth >8 and
<=16bpp uses 2 bytes of RAM. If using the memory device module to prevent the

GUI_Init()

GUI_X_Config()

GUI_ALLOC_AssignMemory()

GUI_ALLOC_SetAvBlockSize(
)

GUI_X_Init()

GUI_TOUCH_Calibrate()

GUI_TOUCH_SetOrientation(
)

/* If GUI_ALLOC_SIZE not defined
*/

/* Optional */

/* Optional */

/* Required */

/* Required */
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

263
display from flickering when using drawing operations for overlapping items a mini-
mum of 4000 bytes is recommended. If enough RAM is available the allocated size
should be sufficient to store the pixels of the largest window plus the memory
requirement of the window manager.

Runtime configuration of available memory
The available memory to be used by emWin can also be configured at runtime during
initialization. To use runtime configuration the value defined by GUI_ALLOC_SIZE
needs to be 0. For further details about this please refer to the function
GUI_ALLOC_AssignMemory().

Examples
� If the current configuration is 16bpp and the largest window is 320x240 pixels

320 x 240 x 2 = 153600 bytes are useful for the memory device module.
� If the current configuration is 16bpp and the largest window is 320x240 pixels

320 x 240 = 76800 bytes are useful for the memory device module.

18.4.2 Available GUI configuration routines
The following table shows the available routines used for high-level configuration of
emWin:

GUI_ALLOC_AssignMemory()
Description
The function assigns the one and only memory block to emWin which is used by the
internal memory management system. This function should be called typically from
GUI_X_Config().

Prototype
void GUI_ALLOC_AssignMemory(void * p, U32 NumBytes);

Add. information
It is required to set the value of GUI_ALLOC_SIZE defined in GUIConf.h to 0 to enable
runtime memory configuration. Please note that not the complete memory block can
be used by the application, because a small overhead of the memory is used by the
management system itself.

GUI_ALLOC_SetAvBlockSize()
Description
Sets the average block size of the memory blocks allocated by the memory manage-
ment system. The block size affects the number of maximum available blocks. If for
example an application uses some listviews with a large number of entries it makes
sense to set the average block size to a small value. On the other hand if an applica-
tion uses the memory management primarily for a few memory devices or image
decompression the average size should be set to a bigger value. The recommended
range is between 32 and 1024. The value depends on the application.
This function should be called typically from GUI_X_Config().

Routine Explanation

GUI_ALLOC_AssignMemory() Assigns a memory block for the memory mamagement system.

GUI_ALLOC_SetAvBlockSize()
Sets the average size of the memory blocks. The bigger the block
size, the less number of memory blocks are available.

Parameter Meaning

p Pointer to the memory block which should be used by emWin.

NumBytes Size of the memory block in bytes.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

264 CHAPTER 18 High-Level Configuration (GUIConf.h)
Prototype
void GUI_ALLOC_SetAvBlockSize(U32 BlockSize);

Add. information
The average block size is used to calculate the maximum number of available mem-
ory blocks:

Max. # of blocks = Size of memory in bytes / (BlockSize + sizeof(BLOCK_STRUCT))

BlockStruct means an internal structure whose size depends on GUI_DEBUG_LEVEL.
If it is >0 the size will be 12 bytes, otherwise 8 bytes. Please note that the structure
size also depends on the used compiler.

18.5 Runtime configuration
The illustration shows the initializa-
tion process of emWin. From the
application only GUI_Init() needs to
be called. In the following the differ-
ent configuration routines which are
called within the initialization process
are explained.

GUI_X_Config()
It is called at the very first beginning
of the initialization process to make
sure memory is assigned to emWin.
Within this routine
GUI_ALLOC_AssignMemory() and
GUI_ALLOC_SetAvBlockSize() must
be used to assign a memory block to
emWin and set the average memory
block size.

GUI_X_Init()
This function can be used for initialz-
ing a touch screen using the func-
tions GUI_TOUCH_Calibrate() and
GUI_TOUCH_SetOrientation(). It is
called immediately after
GUI_X_Config().

LCD_X_InitController()
Typically the initialization macro LCD_INIT_CONTROLLER defined in LCDConf.h con-
tains a function call to LCD_X_InitController() which nedds to be part of the appli-
cation. This routine should make sure that the display controller registers are
initialized right. If a runtime configurable display driver is used this routine should
also make sure that the display driver is configured right.

18.6 GUI_X routine reference
When using emWin on the target hardware, there are several hardware-dependent
functions which must exist. When using the simulation, the library already contains
them. A sample file can be found under Sample\GUI_X\GUI_X.c. The following table

Parameter Meaning

BlockSize Average block

GUI_Init()

GUI_X_Config()

GUI_ALLOC_AssignMemory()

GUI_ALLOC_SetAvBlockSize(
)

GUI_X_Init()

GUI_TOUCH_Calibrate()

GUI_TOUCH_SetOrientation(
)

/* If GUI_ALLOC_SIZE not defined
*/

/* Optional */

/* Optional */

/* Required */

/* Required */
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

265
lists the available hardware-dependent functions in alphabetical order within their
respective categories. Detailed description of the routines can be found in the sec-
tions that follow.

18.6.1 Init routines

GUI_X_Config()
Description
Called from GUI_Init() for runtime configuration. Typically used for memory man-
agement initialization described above in this chapter. First GUI_X_Config() is called
and then GUI_X_Init().

Prototype
void GUI_X_Config(void);

GUI_X_Init()
Description
Called from GUI_Init(); can be used to initialize hardware.

Prototype
void GUI_X_Init(void);

18.6.2 Timing routines

GUI_X_Delay()
Description
Returns after a specified time period in milliseconds.

Prototype
void GUI_X_Delay(int Period)

Routine Explanation

Init routines
GUI_X_Config() Called from GUI_Init() if runtime configuration is required.

GUI_X_Init() Called from GUI_Init(); can be used to initialize hardware.

Timing routines
GUI_X_Delay() Return after a given period.

GUI_X_ExecIdle() Called only from non-blocking functions of window manager.

GUI_X_GetTime() Return the system time in milliseconds.

Kernel interface routines

GUI_X_InitOS()
Initialize the kernel interface module (create a resource semaphore/
mutex).

GUI_X_GetTaskId() Return a unique, 32-bit identifier for the current task/thread.

GUI_X_Lock() Lock the GUI (block resource semaphore/mutex).

GUI_X_Unlock() Unlock the GUI (unblock resource semaphore/mutex).

Debugging
GUI_X_Log() Return debug information; required if logging is enabled.

Parameter Meaning

Period Period in milliseconds.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

266 CHAPTER 18 High-Level Configuration (GUIConf.h)
GUI_X_ExecIdle()
Description
Called only from non-blocking functions of the window manager.

Prototype
void GUI_X_ExecIdle(void);

Add. information
Called when there are no longer any messages which require processing. In this case
the GUI is up to date.

GUI_X_GetTime()
Description
Used by GUI_GetTime to return the current system time in milliseconds.

Prototype
int GUI_X_GetTime(void)

Return value
The current system time in milliseconds, of type integer.

18.6.3 Kernel interface routines
Detailed descriptions for these routines may be found in Chapter 11: "Execution
Model: Single Task/Multitask".

18.7 Debugging

GUI_X_ErrorOut(), GUI_X_Warn(), GUI_X_Log()
Description
These routines are called by emWin with debug information in higher debug levels in
case a problem (Error) or potential problem is discovered. The routines can be blank;
they are not required for the functionality of emWin. In a target system, they are
typically not required in a release (production) build, since a production build typi-
cally uses a lower debug level.
Fatal errors are output using GUI_X_ErrorOut() if (GUI_DEBUG_LEVEL >= 3)
Warnings are output using GUI_X_Warn() if (GUI_DEBUG_LEVEL >= 4)
Messages are output using GUI_X_Log() if (GUI_DEBUG_LEVEL >= 5)

Prototypes
void GUI_X_ErrorOut(const char * s);
void GUI_X_Warn(const char * s);

void GUI_X_Log(const char * s);

Parameter Meaning

s Pointer to the string to be sent.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

267
Add. information
This routine is called by emWin to tramsmit error messages or warnings, and is
required if logging is enabled. The GUI calls this function depending on the configura-
tion macro GUI_DEBUG_LEVEL. The following table lists the permitted values for
GUI_DEBUG_LEVEL:

18.8 Dynamic memory
emWin contains its own memory management system. But it is also possible to use
your own memory management system. The following table shows the available mac-
ros used for dynamic memory configuration of emWin:

GUI_ALLOC_ALLOC
Description
Allocates a memory block and returns a handle to it.

Type
Function replacement.

Prototype
#define GUI_ALLOC_ALLOC(Size)

Example
#define GUI_ALLOC_ALLOC(Size) malloc(Size)

GUI_ALLOC_FREE
Description
Releases a memory block.

Type
Function replacement.

Value Symbolic name Explanation

0 GUI_DEBUG_LEVEL_NOCHECK No run-time checks are performed.

1 GUI_DEBUG_LEVEL_CHECK_PARA
Parameter checks are performed to avoid crashes.
(Default for target system)

2 GUI_DEBUG_LEVEL_CHECK_ALL
Parameter checks and consistency checks are per-
formed.

3 GUI_DEBUG_LEVEL_LOG_ERRORS Errors are recorded.

4 GUI_DEBUG_LEVEL_LOG_WARNINGS
Errors and warnings are recorded.
(Default for PC-simulation)

5 GUI_DEBUG_LEVEL_LOG_ALL Errors, warnings and messages are recorded.

Type Macro Explanation

F GUI_ALLOC_ALLOC(Size) Used to allocate a memory block, returns a memor handle.

F GUI_ALLOC_FREE(pMem) Used to release a memory block.

F GUI_ALLOC_GETMAXSIZE() Returns the maximum number of bytes of available memory.

F GUI_ALLOC_H2P(hMem) Converts a memory handle to a memory pointer.

A GUI_HMEM Type of a memory handle.

Parameter Meaning

Size Size of required memory block
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

268 CHAPTER 18 High-Level Configuration (GUIConf.h)
Prototype
#define GUI_ALLOC_FREE(pMem)

Example
#define GUI_ALLOC_FREE(pMem) free(pMem)

GUI_ALLOC_GETMAXSIZE
Description
Returns the maximum number of bytes of available memory.

Type
Function replacement.

Prototype
#define GUI_ALLOC_GETMAXSIZE()

Example
#define GUI_ALLOC_GETMAXSIZE() 10000

GUI_ALLOC_H2P
Description
Converts a memory handle to a memory pointer.

Type
Function replacement.

Prototype
#define GUI_ALLOC_H2P(hMem)

Example
#define GUI_ALLOC_H2P(hMem) hMem

GUI_HMEM
Description
Defines the type of a memory handle.

Type
Text replacement.

Example
#define GUI_HMEM void *

Example
The following sample is an excerpt from the GUIConf.h which uses the standard
dynamic memory system:

#include <malloc.h>
#include <memory.h>

#define GUI_HMEM void *
#define GUI_ALLOC_ALLOC(Size) malloc(Size)

Parameter Meaning

pMem Pointer to memory block to be released.

Parameter Meaning

hMem Memory handle to be converted to a memory pointer.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

269
#define GUI_ALLOC_FREE(pMem) free(pMem)
#define GUI_ALLOC_H2P(hMem) hMem
#define GUI_ALLOC_GETMAXSIZE() 10000

18.9 Special considerations for certain Compilers/
CPUs

18.9.1 AVR with IAR-Compiler
When using an Atmel AVR CPU and a IAR compiler and you need to put const data in
flash ROM you need to add 2 additional configuration macros to GUIConf.h:

GUI_UNI_PTR
Description
Defines a "universal pointer" which can point to RAM and flash ROM. On some sys-
tems it can be necessary since a default pointer can access RAM only, not the built-in
Flash.

Type
Alias.

Example
#define GUI_UNI_PTR __generic

GUI_CONST_STORAGE
Description
Defines the const storage. On some systems it can be necessary since otherwise con-
stants are copied into RAM.

Type
Alias.

Example
#define GUI_CONST_STORAGE __flash const

18.9.2 8051 Keil compiler and other 8-bit CPU compilers
Keils 8051 Compiler (tested in V5 & V6) has limitation as far as function pointers are
concerned. The compiler is limited in respect to the number of parameters which can
be passed to a function called thru a function pointer (indirect function call). Some
other 8-bit compilers (for 6502 type architechures, such as ST7, but possibly also
other chips) may also have a similar limitation. The config switch below allows to cir-
cumvent most of these limitations by avoiding function calls with multiple parame-
ters.

Type Macro Default Explanation

A GUI_UNI_PTR --- Define "universal pointer".

A GUI_CONST_STORAGE const Define const storage.

Type Macro Default Explanation

A GUI_COMPILER_SUPPORTS_FP 1
Set to 0 if the compiler does not support com-
plex function calls via function pointers.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

270 CHAPTER 18 High-Level Configuration (GUIConf.h)
GUI_COMPILER_SUPPORTS_FP
Description
Used to enable/disable the use of complex function pointers.

Type
Alias.

Example
#define GUI_COMPILER_SUPPORTS_FP 0 /* Disable the use of complex function pointers */

Add. information
Disabling this config switch will make it possible to use the software even with very
limited "C"-compilers for small chips. Howver, this comes at a price:
The available functionality is limited as well. The following limitations apply in this
case:
- Text rotation can not be used
- Compressed bitmaps can not be used
- Higher level software, such as memory devices, window manager & VNC server can
not be used
- Antialiasing can not be used
- Some other (smaller) restrictions may apply.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

271
Chapter 19

Performance and Resource
Usage
High performance combined with low resource usage has always been a major design
consideration. emWin runs on 8/16/32-bit CPUs. Depending on which modules are
being used, even single-chip systems with less than 64kb ROM and 2kb RAM can be
supported by emWin. The actual performance and resource usage depends on many
factors (CPU, compiler, memory model, optimization, configuration, interface to LCD
controller, etc.). This chapter contains benchmarks and information about resource
usage in typical systems which can be used to obtain sufficient estimates for most
target systems.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

272 CHAPTER 19 Performance and Resource Usage
19.1 Memory requirements
The operation area of emWin varies widely, depending primarily on the application
and features used. In the following sections, memory requirements of different mod-
ules are listed as well as memory requirement of sample applications. The memory
requirements of the GUI components have been measured on a system as follows:

ARM7, IAR Embedded workbench V4.42A, Thumb mode, Size optimization

19.1.1 Memory requirements of the GUI components
The following table shows the memory requirements of the main components of
emWin. These values depend a lot on the compiler options, the compiler version and
the used CPU. Please note that the listed values are the requirements of the basic
functions of each module and that there are several additional functions available
which have not been considered in the table:

*1. The listed memory requirements of the widgets contain the basic routines
required for creating and drawing the widget. Depending of the specific widget there
are several additional functions available which are not listed in the table.

19.1.2 Stack requirements
The basic stack requirement is app. 600 bytes.

Component ROM RAM Explanation

Driver + 2 - 8 kB 20

The memory requirements of the driver depend
on the configured driver and if a data cache is
used or not. With a data cache the driver
requires more RAM. For details please refer to
the driver documentation.

Core 5.2 kB 80 Byte
Memory requirements of a typicall �Hello world�
application without using additional software
items.

Core / Fonts
(see expla-
nation)

-
For details about the ROM requirements of the
standard fonts shipped with emWin please refer
to the font chapter.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

273
Chapter 20

Support
This chapter should help if any problem occurs. This could be a problem with the tool
chain, with the hardware, the use of the GUI functions or with the performance and
it describes how to contact the emWin support.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

274 CHAPTER 20 Support
20.1 Problems with tool chain (compiler, linker)
The following shows some of the problems that can occur with the use of your tool
chain. The chapter shows what to do in case of a problem and how to contact the
emWin support.

20.1.1 Compiler crash
You ran into a tool chain (compiler) problem, not a problem of emWin. If one of the
tools of your tool chain crashes, you should contact your compiler support:
"Tool internal error, please contact support"

20.1.2 Compiler warnings
The code of emWin has been tested on different target systems and with different
compilers. We spend a lot of time on improving the quality of the code and we do our
best to avoid compiler warnings. But the sensitivity of each compiler regarding warn-
ings is different. So we can not avoid compiler warnings for unknown tools.

Warnings you should not see
This kind of warnings should not occur:
"Function has no prototype"
"Incompatible pointer types"
"Variable used without having been initialized"
"Illegal redefinition of macro"

Warnings you may see
Warnings such as the ones below should be ignored:
"Integer conversion, may loose significant bits"
"Statement not reached"
"Meaningless statements were deleted during op-timization"
"Condition is always true/false"
"Unreachable code"

Most compilers offers a way to supress selected warnings.

Warning "Parameter not used"
Depending of the used configuration sometimes not all of the parameters of the func-
tions are used. To avoid compiler warnings regarding this problem you can define
the macro GUI_USE_PARA in the file GUIConf.h like the following sample:

#define GUI_USE_PARA(para) para=para;

emWin uses this macro wherever necessary to avoid this type of warning.

20.1.3 Linker problems
Undefined externals
If your linker shows the error message "Undefined external symbols..." please check
if the following files have been included to the project or library:
� All source files shipped with emWin
� In case of a simple bus interface: One of the hardware routines located in the

folder Sample\LCD_X? For details about this please take a look to the chapter
�Low-Level Configuration�.

� One of the files located in the folder Sample\GUI_X? For details about this please
take a look to the chapter �High-Level Configuration�.

Executable to large
Some linkers are not able to link only the modules/functions referenced by the
project. This results is an executable with a lot of unused code. In this case the use
of a library would be very helpful. For detailes about how to build an emWin library
please take a look at the chapter �Getting started�.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

275
20.2 Problems with hardware/driver
If your tools are working fine but your display does not work may one of the following
helps to find the problem.

Stack size to low?
Please make sure there have been configured enough stack. We can not estimate
exactly how much stack will be used by your configuraton and with your compiler. If
you wand to

Initialisation of the display wrong?
If the LCD_INIT_CONTROLLER macro is needed by your driver please check, if this
macro has been adapted to your needs.

Display interface configured wrong?
When starting to work with emWin and the display does not show something you
should use an oscilloscope to measure the pins connected with the display/controller.
If there is a problem please check the following:
� If using a simple bus interface: Probably the hardware routines have not been

configured correctly. If possible use an emulator and step through these rou-
tines.

� If using a full bus interface: Probably the register/memory access have not been
configured correctly.

20.3 Problems with API functions
If your tool chain and your hardware works fine but the API functions do not function
as documented, please make a small sample as described later under �Contacting
Support. This allows us to easily reproduce the problem and solve it quickly.

20.4 Problems with the performance
If there is any performance problem with emWin it should be determined, which part
of the software causes the problem.

Does the driver causes the problem?
To determine the cause of the problem the first step should be writing a small test
routine which executes some testcode and measures the time used to execute this
code. Starting point should be the file ProblemReport.c described above. To mea-
sure the time used by the real hardware driver the shipment of emWin contains the
driver LCDNull.c. This driver can be used if no output to the hardware should be
done. To activate the driver the LCD_CONTROLLER macro in LCDConf.h as follows:

#define LCD_CONTROLLER -2

The difference between the used time by the real driver and the LCDNull driver
shows the execution time spent in the real hardware driver.

Driver not optimized?
If there is a significant difference between the use of the real driver and the LCDNull
driver the cause of the problem could be a not optimized driver mode. If using one of
the following macros: LCD_MIRROR_X, LCD_MIRROR_Y, LCD_SWAP_XY or LCD_CACHE
the driver may not be optimized for the configured mode. In this case please contact
our support, we should be able to optimize the code.

Slow display controller?
Also please take a look to the chapter �Display drivers�. If using a slow display con-
troller like the Epson SED1335 this chapter may answer the question, why the driver
works slow.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

276 CHAPTER 20 Support
20.5 Contacting support
If you need to contact the emWin support, please send the following information to
the support:
� A detailed description of the problem may written as comment in the sample

code.
� The configuration file GUIConf.h.
� The configuration file LCDConf.h.
� A sample source file which can be compiled in the simulation without any addi-

tional files as described in the following.
� If there are any problems with the tool chain please also send the error message

of the compiler/linker.
� If there are any problems with the hardware/driver and a simple bus interface is

used please also send the hardware routines including the configuration.

Problem report
The following file can be used as a starting point when creating a problem report.
Please also fill in the CPU, the used tool chain and the problem description. It can be
found under Sample\Tutorial\ProblemReport.c:

/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* *
* emWin problem report *
* *
**

--
File : ProblemReport.c
CPU :
Compiler/Tool chain :
Problem description :
--
*/

#include "GUI.h"
/* Add further GUI header files here as required. */

/***
*
* Static code
*
**
*
* Please insert helper functions here if required.
*/

/***
*
* MainTask
*/
void MainTask(void) {
 GUI_Init();
 /*
 To do: Insert the code here which demonstrates the problem.
 */
 while (1); /* Make sure program does not terminate */
}

20.6 FAQ’s
Q: I use a different LCD controller. Can I still use emWin?
A: Yes. The hardware access is done in the driver module and is completely indepen-

dent of the rest of the GUI. The appropriate driver can be easily written for any
controller (memory-mapped or bus-driven). Please get in touch with us.

Q: Which CPUs can I use emWin 8051 with?
A: emWin 8051 can only be used with an 8051 CPU with a Keil compiler.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

277
Q: Is emWin flexible enough to do what I want to do in my application?
A: emWin should be flexible enough for any application. If for some reason you do

not think it is in your case, please contact us.

Q: Does emWin work in a multitask environment?
A: Yes, it has been designed with multitask kernels in mind.
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

278 CHAPTER 20 Support
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

279
Index
Numerics
3 pin SPI, configuration 242
4 pin SPI, configuration 243�244

A
Access addresses, defining22
Access routines, defining22
Additional software21
Alias macro ...22
ANSI ...12, 247
API reference

colors .. 160
device simulator 30, 34
fonts .. 103
graphics ...76
kernel interface routines 172
LCD driver 219
LCD layer 219
text ...52
timing and execution 230
values ..66

Application program interface (API) .14, 218
Arcs, drawing 95�96
ASCII 52, 101, 107, 109

B
Best palette option139, 142, 144
Binary switch macro21
Binary values, displaying 72�73
Bitmap converter13, 133�146

command line usage 142�144
supported input formats 134
using for color conversion 139�140

Bitmaps 133�146
color conversion of 139�140
device-dependent (DDB) 135
device-independent (DIB) 135
drawing 83�85
full-color mode 139
generating "C" files from 133�139
manipulating 134
RLE compressed135, 140, 145

BmpCvt.exe142�144

C
"C" compiler 25, 135
"C" files

converting bitmaps into133�139
converting fonts into109
inclusion of in emWin 21

"C" programming language 12
Callback routines 33
Character sets107�109
Circles, drawing 93�94
Clipping ... 75
Color bar test routine148�149
Color conversion, of bitmaps . 134, 139�140
Color lookup table (LUT)160
Color palettes

best palette option 139, 142, 144
custom 140�141, 160
fixed 139, 149�158

Colors ..147
converting147
logical ..147
physical ..147
predefined148

COM/SEG lines
configuration252�255
lookup tables for255

Command line usage
of bitmap converter142�144

Compile time switches 13
Compiling, with simulator

demo program 26, 28
for your application 28
samples .. 27

Config folder21, 28, 231
Configuration, of emWin 21

high-level259�270
low-level231�257

Control characters 52, 101
Coordinates .. 14
Custom palettes

defining for hardware160
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

280 Index
file formats, for color conversion 141
for color conversion 140�141

D
Data types ... 16
Decimal values, displaying66�69
Demos ... 14
Device simulation ??� 32
Device.bmp30, 33
Device1.bmp30, 33
Device-dependent bitmap (DDB) 135
Device-independent bitmap (DIB) 135
Directories, inclusion of 18
Directory structure

for emWin .. 18
for simulator 28
for Visual C++ workspace 28

Display driver 199
Drawing modes77�78

E
Ellipses, drawing94�95
embOS .. 167

kernel interface routines for 174
emWin

as trial version26�27
configuration of 21
data types used (see Data types)
directory structure for 18
features of 13
in multitask environments 22
initialization of 22
memory requirements 272
updating to newer versions 18

Execution model 167
supported types 168

F
Fixed color palettes 139
Fixed palette modes 149�158
Floating-point calculations 75
Floating-point values, displaying70�72
Font converter13, 102, 109
Font editor 109
Font files

linking 102, 110
naming convention 111

Fonts .. 13, 101
adding ... 110
converting (see Font converter)
creating additional 102
declaring 102, 110
default .. 103
defining ... 13
Digit fonts (monospaced) 130
Digit fonts (proportional) 128�129
editing ... 109
file naming convention 111�112
generating "C" files from 109
included with emWin 13, 101
monospaced 110, 123�127
naming convention 110�111
proportional 102, 110, 113�122
scaling ... 13
selecting 103�104

usage of ... 102
Foreign Language Support 189
Full bus interface, configuration 247�249
Full-color mode, of bitmaps 139
Function replacement macro22
Function-level linking18

G
Graphic library 13, 75, 229
Grayscales139, 147
GUI configuration 260�270
GUI subdirectories 18, 28
GUI_ALLOC_ALLOC 267
GUI_ALLOC_AssignMemory 263
GUI_ALLOC_FREE 267
GUI_ALLOC_GETMAXSIZE 268
GUI_ALLOC_H2P 268
GUI_ALLOC_SetAvBlockSize 263
GUI_ALLOC_SIZE 260
GUI_BITMAP structures 134
GUI_CalcColorDist 163
GUI_CalcVisColorError 163
GUI_Clear ..62
GUI_ClearKeyBuffer 187
GUI_ClearRect79
GUI_Color2Index 163
GUI_Color2VisColor 164
GUI_ColorIsAvailable 164
GUI_COMPILER_SUPPORTS_FP 269�270
GUI_CONST_STORAGE 269
GUI_DEBUG_LEVEL 260
GUI_DEFAULT_BKCOLOR 260
GUI_DEFAULT_COLOR 260
GUI_DEFAULT_FONT 260
GUI_Delay 229�230
GUI_DispBin72
GUI_DispBinAt73
GUI_DispCEOL62
GUI_DispChar53
GUI_DispCharAt54
GUI_DispChars54
GUI_DispDec66
GUI_DispDecAt67
GUI_DispDecMin67
GUI_DispDecShift68
GUI_DispDecSpace68
GUI_DispFloat70
GUI_DispFloatFix71
GUI_DispFloatMin71
GUI_DispHex73
GUI_DispHexAt74
GUI_DispNextLine54
GUI_DispSDec68
GUI_DispSDecShift69
GUI_DispSFloatFix72
GUI_DispSFloatMin72
GUI_DispString55
GUI_DispStringAt55
GUI_DispStringAtCEOL55
GUI_DispStringHCenterAt56
GUI_DispStringInRect56
GUI_DispStringInRectEx56
GUI_DispStringInRectWrap56
GUI_DispStringLen57
GUI_DrawArc95
GUI_DrawBitmap83
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

Index 281
GUI_DrawBitmapEx84
GUI_DrawBitmapExp84
GUI_DrawBitmapMag85
GUI_DrawCircle93
GUI_DrawEllipse94
GUI_DrawGradientH80
GUI_DrawGraph96
GUI_DrawHLine85
GUI_DrawLine86
GUI_DrawLineRel86
GUI_DrawLineTo86
GUI_DRAWMODE_XOR77
GUI_DrawPie97
GUI_DrawPixel80
GUI_DrawPoint81
GUI_DrawPolygon89
GUI_DrawPolyLine87
GUI_DrawRect81
GUI_DrawRoundedRect81
GUI_DrawStreamedBitmap85
GUI_DrawVLine 87�88
GUI_EnlargePolygon89
GUI_FillCircle93
GUI_FillEllipse94
GUI_FillPolygon90
GUI_FillRect ..82
GUI_FillRectEx82
GUI_FillRoundedRect82
GUI_FONT structures 109
GUI_GetBkColor 161
GUI_GetBkColorIndex 161
GUI_GetCharDistX 104
GUI_GetClientRect78
GUI_GetColor 161
GUI_GetColorIndex 162
GUI_GetDispPosX62
GUI_GetDispPosY62
GUI_GetDrawMode77
GUI_GetFont 104
GUI_GetFontDistY 105
GUI_GetFontInfo 105
GUI_GetFontSizeY 105
GUI_GetKey 188
GUI_GetLineStyle87
GUI_GetOrg 181
GUI_GetPenSize79
GUI_GetStringDistX 106
GUI_GetTextAlign60
GUI_GetTextExtend 106
GUI_GetTime 230
GUI_GetVersionString74
GUI_GetYDistOfFont 106
GUI_GetYSizeOfFont 106
GUI_GotoX ...61
GUI_GotoXY ..61
GUI_GotoY ...61
GUI_HMEM 268
GUI_Index2Color 164
GUI_Init ...22
GUI_InitLUT 164
GUI_InvertRect83
GUI_IsInFont 106
GUI_MagnifyPolygon90
GUI_MAXBLOCKS 260
GUI_MAXTASK171, 260
GUI_MEMCPY 260
GUI_MEMSET 260

GUI_MoveRel 88
GUI_OS 171, 261
GUI_RestoreContext 98
GUI_RotatePolygon 91
GUI_SaveContext 98
GUI_SendKeyMsg187
GUI_SetBkColor162
GUI_SetBkColorIndex162
GUI_SetClipRect 98
GUI_SetColor162
GUI_SetColorIndex163
GUI_SetDrawMode 77
GUI_SetFont103
GUI_SetLBorder 60
GUI_SetLineStyle 88
GUI_SetLUTColor165
GUI_SetLUTEntry165
GUI_SetOrg181
GUI_SetPenSize 79
GUI_SetTextAlign 60
GUI_SetTextMode 59
GUI_SetTextStyle 60
GUI_StoreKey188
GUI_StoreKeyMsg186
GUI_SUPPORT_ARABIC261
GUI_SUPPORT_LARGE_BITMAPS261
GUI_SUPPORT_TOUCH261
GUI_SUPPORT_UNICODE261
GUI_TEXTMODE_NORMAL 59, 61
GUI_TEXTMODE_REVERSE 59, 61
GUI_TEXTMODE_TRANSPARENT 59, 61
GUI_TEXTMODE_XOR 59, 61
GUI_TRIAL_VERSION261
GUI_UC_ConvertUC2UTF8192
GUI_UC_ConvertUTF82UC192
GUI_UC_DispString194
GUI_UC_Encode193
GUI_UC_GetCharCode193
GUI_UC_GetCharSize193
GUI_UC_SetEncodeNone194
GUI_UC_SetEncodeUTF8194
GUI_UNI_PTR269
GUI_WaitKey188
GUI_X_Config()265
GUI_X_Delay 230, 265
GUI_X_ExecIdle266
GUI_X_GetTaskID173
GUI_X_GetTime 230, 266
GUI_X_Init ..265
GUI_X_InitOS173
GUI_X_Lock173
GUI_X_Log266
GUI_X_SIGNAL_EVENT171
GUI_X_SignalEvent173
GUI_X_Unlock174
GUI_X_WAIT_EVENT172
GUI_X_WaitEvent174
GUIConf.h 103, 259

H
Hardkey simulation 33�36
Hello world program 23
Hexadecimal values, displaying 73�74

I
I/O pins, connection to 241�243, 246
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

282 Index
I2C bus interface, configuration 245�246
Initializing emWin 22
Input devices 185�188

keyboard ??� 188
Interrupt service routines 168�170
ISO 8859-1 101, 107, 109

K
Kernel interface routines 168�170, 172
Keyboard input support ??� 188

L
LCD ... 215

caching in memory 13
configuration of 147, 231�256
connecting to microcontroller 15
initialization of 22
simulated ... 30
without LCD controller 15

LCD controller
configuration of 231�257
connected to port/buffer 15
initialization of 235
memory-mapped 15
support for 15, 200
with LUT hardware 164, 255

LCD driver .. 26
availability/selection 200
customization of 15

LCD_BITSPERPIXEL 234
LCD_BUSWIDTH 215, 248
LCD_CACHE 256
LCD_CNF4 .. 215
LCD_CONTROLLER 202, 234
LCD_ENABLE_MEM_ACCESS 215, 249
LCD_ENABLE_REG_ACCESS 215, 249
LCD_ENDIAN_BIG 207, 210
LCD_FILL_RECT 207, 210, 215
LCD_FIXEDPALETTE 234
LCD_GetBitsPerPixel 224
LCD_GetBitsPerPixelEx 224
LCD_GetFixedPalette 225
LCD_GetFixedPaletteEx 225
LCD_GetNumColors 225
LCD_GetNumColorsEx 225
LCD_GetVXSize 226
LCD_GetVXSizeEx 226
LCD_GetVYSize 226
LCD_GetVYSizeEx 226
LCD_GetXMagEx 226
LCD_GetXSize 227
LCD_GetXSizeEx 227
LCD_GetYMagEx 226
LCD_GetYSize 227
LCD_GetYSizeEx 227
LCD_INIT_CONTROLLER 235
LCD_L0_ControlCache 223
LCD_L0_DrawBitMap 220
LCD_L0_DrawHLine 221
LCD_L0_DrawPixel 221
LCD_L0_DrawVLine 221
LCD_L0_FillRect 221
LCD_L0_GetPixelIndex 222
LCD_L0_Init 220
LCD_L0_Off 220
LCD_L0_On 220

LCD_L0_SetLUTEntry 223
LCD_L0_SetPixelIndex 222
LCD_L0_XorPixel 222
LCD_LIN_SWAP 210�211
LCD_LUT_COM 255
LCD_LUT_SEG 255
LCD_MAX_LOG_COLORS 238
LCD_MIRROR_X 237
LCD_MIRROR_Y 237
LCD_NUM_CONTROLLERS 256
LCD_NUM_DUMMY_READS 217
LCD_OFF 207, 210, 215, 257
LCD_ON 207, 210, 215, 257
LCD_PHYSCOLORS 238
LCD_PHYSCOLORS_IN_RAM 165
LCD_READ_A0239, 245
LCD_READ_A1239, 245
LCD_READ_MEM210, 214, 247
LCD_READ_REG214�215, 247
LCD_READM_A1 217
LCD_REG01 217
LCD_REVERSE 238
LCD_SERIAL_ID 217
LCD_SET_LUT_ENTRY .. 207, 210, 215, 239
LCD_SUPPORT_CACHECONTROL 256
LCD_SWAP_BYTE_ORDER215, 249
LCD_SWAP_RB215, 239
LCD_SWAP_XY 238
LCD_TIMERINIT0 257
LCD_TIMERINIT1 257
LCD_USE_BITBLT215, 256
LCD_USE_PARALLEL_16 217
LCD_USE_SERIAL_3PIN 217
LCD_VRAM_ADR207, 210
LCD_VXSIZE 251
LCD_VYSIZE 251
LCD_WRITE 242
LCD_WRITE_A0 217, 240, 243, 245
LCD_WRITE_A1 217, 240, 243, 245
LCD_WRITE_BUFFER_SIZE 217
LCD_WRITE_MEM210, 214, 248
LCD_WRITE_REG214�215, 248
LCD_WRITEM 242
LCD_WRITEM_A0 217
LCD_WRITEM_A1 217, 240, 243, 246
LCD_X_InitController215, 224
LCD_XSIZE 234
LCD_YSIZE 234
LCD667XX driver 216�217
LCDConf.c ...21
LCDConf.h15, 21, 160, 199, 231
LCDDummy driver 217
LCDLin driver 205�215
LCDLin32 driver 207
LCDLin32168 driver 206
LCDNull driver 218
LCDTemplate driver ??�....................... 218
Library, creating19
Linearization 165
Lines, drawing85�87
Linking source files18
Lookup table (LUT) 158, 160, 164, 218, 255

M
Memory, reducing consumption of .134, 139
Multitask environments 168�171
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

Index 283
multiple tasks call emWin ...168, 170�171
one task calls emWin 168�169

N
NORMAL drawing mode77
Normal text ..58
Numerical value macro21

O
Optional software21

P
Palettes (see Color palettes)
Performance 271
Pixels ...14
Polygons, drawing 89�93
Proportional fonts (see Fonts)

R
Real bus-interface 240
resource ...30
Resource file 30, 33
Resource semaphore 172
Resource usage 271
Reverse text58
RLE compression, of bitmaps .135, 140, 145

S
S1D13806 controller 215
Sample programs 14, 22
SED1386 controller 215
Selection switch macro22
SIM_GUI_CreateLCDInfoWindow()41
SIM_GUI_CreateLCDWindow41
SIM_GUI_Exit42
SIM_GUI_Init42
SIM_GUI_SetLCDColorBlack31
SIM_GUI_SetLCDColorWhite31
SIM_GUI_SetLCDPos32
SIM_GUI_SetLCDWindowHook42
SIM_GUI_SetMag32
SIM_GUI_SetTransColor32
SIM_HARDKEY_GetNum34
SIM_HARDKEY_GetState34
SIM_HARDKEY_SetCallback35
SIM_HARDKEY_SetMode 33, 35
SIM_HARDKEY_SetState36
SIM_SetTransColor30
Simple bus interface, configuration 239�241
Simulator 13, 25

directory structure for28
usage of with emWin source 28�29
usage of with emWin trial version .. 26�27

Single task system 168�169
Source files, linking18
Sprintf ...65
Standard fonts 101
Subdirectories, of GUI18
Superloop 168�169
Support .. 273
Syntax, conventions used14

T
Text

alignment 60�61
displaying 51�58
modes .. 58�59
positioning52, 61�62

Tick ...229�230
Time-related functions229
Toggle behavior, of hardkeys 33, 36
Touch-screens 13
Transparency

in device simulation 30
Transparent reversed text 58
Transparent text 58
Trial version, of emWin 26�27
Tutorial ... 22�23

U
uC/OS ..167

kernel interface routines for174
Unicode 101, 109

API reference192
displaying characters in190

UTF-8 strings191

V
Values, displaying 65
Vectorized symbols 89
Viewer .. 13�49
Virtual display 13
Virtual screen support177�181
Visual C++ 26, 28

directory structure for 28

W
Western Latin character set (see ISO 8859-1)
Widgets ..229
Win32, kernel interface routines for175
Window manager230
Windows

clearing ... 62
WM_Exec ..230

X
X-axis .. 14
XOR drawing mode 77
XOR text .. 58

Y
Y-axis .. 14
User’s & reference manual for emWin 8051 © 1997 - 2009 SEGGER Microcontroller GmbH & Co. KG

	Table of Contents
	Introduction to emWin 8051
	1.1 Purpose of this document
	1.2 Assumptions
	1.3 Differences between emWin and emWin 8051
	1.4 Requirements
	1.4.1 Target system (hardware)
	1.4.2 Development environment (compiler)

	1.5 Features of emWin 8051
	1.6 Samples and demos
	1.7 How to use this manual
	1.8 Typographic conventions for syntax
	1.9 Screen and coordinates
	1.10 How to connect the LCD to the microcontroller
	1.11 Data types

	Getting Started
	2.1 Recommended directory structure
	2.1.1 Subdirectories
	2.1.2 Include directories

	2.2 Adding emWin to the target program
	2.3 Creating a library
	2.3.1 Adapting the library batch files to a different system

	2.4 "C" files to include in the project
	2.5 Configuring emWin
	2.6 Initializing emWin
	2.7 Using emWin with target hardware
	2.8 The "Hello world" sample program

	Simulator
	3.1 Using the simulator
	3.1.1 Using the simulator in the trial emWin version
	3.1.2 Using the simulator with the emWin source

	3.2 Device simulation
	3.2.1 Device simulator API
	3.2.2 Hardkey simulation

	3.3 Integrating the emWin simulation into an existing simulation
	3.3.1 Directory structure
	3.3.2 Using the simulation library
	3.3.3 Integration into the embOS Simulation
	3.3.4 GUI simulation API

	Viewer
	4.1 Using the viewer
	4.1.1 Using the simulator and the viewer
	4.1.2 Using the viewer with virtual pages
	4.1.3 Always on top
	4.1.4 Open further windows of the display output
	4.1.5 Zooming
	4.1.6 Copy the output to the clipboard
	4.1.7 Using the viewer with multiple displays
	4.1.8 Using the viewer with multiple layers

	Displaying Text
	5.1 Basic routines
	5.2 Text API
	5.3 Routines to display text
	5.4 Selecting text drawing modes
	5.5 Selecting text alignment
	5.6 Setting the current text position
	5.7 Retrieving the current text position
	5.8 Routines to clear a window or parts of it

	Displaying Values
	6.1 Value API
	6.2 Displaying decimal values
	6.3 Displaying floating-point values
	6.4 Displaying binary values
	6.5 Displaying hexadecimal values
	6.6 Version of emWin

	2-D Graphic Library
	7.1 Graphic API
	7.2 Drawing modes
	7.3 Query current client rectangle
	7.4 Pen size
	7.5 Basic drawing routines
	7.6 Drawing bitmaps
	7.7 Drawing lines
	7.8 Drawing polygons
	7.9 Drawing circles
	7.10 Drawing ellipses
	7.11 Drawing arcs
	7.12 Drawing graphs
	7.13 Drawing pie charts
	7.14 Saving and restoring the GUI-context
	7.15 Clipping

	Fonts
	8.1 Introduction
	8.2 Font types
	8.3 Font formats
	8.3.1 ’C’ file format

	8.4 Declaring custom fonts
	8.5 Selection of a font
	8.6 Font API
	8.7 ’C’ file related font functions
	8.8 Common font-related functions
	8.9 Character sets
	8.9.1 ASCII
	8.9.2 ISO 8859-1 Western Latin character set
	8.9.3 Unicode

	8.10 Font converter
	8.10.1 Adding fonts

	8.11 Standard fonts
	8.11.1 Font identifier naming convention
	8.11.2 Font file naming convention
	8.11.3 Measurement, ROM-size and character set of fonts
	8.11.4 Proportional fonts
	8.11.5 Monospaced fonts
	8.11.6 Digit fonts (proportional)
	8.11.7 Digit fonts (monospaced)

	Bitmap Converter
	9.1 What it does
	9.2 Loading a bitmap
	9.2.1 Supported file formats
	9.2.2 Loading from a file
	9.2.3 Using the clipboard

	9.3 Generating "C" files from bitmaps
	9.3.1 Supported bitmap formats
	9.3.2 Palette information
	9.3.3 Transparency
	9.3.4 Alpha blending
	9.3.5 Selecting the best format
	9.3.6 Saving the file

	9.4 Color conversion
	9.5 Compressed bitmaps
	9.6 Using a custom palette
	9.6.1 Saving a palette file
	9.6.2 Palette file format
	9.6.3 Palette files for fixed palette modes
	9.6.4 Converting a bitmap

	9.7 Command line usage
	9.7.1 Format for commands
	9.7.2 Valid command line options

	9.8 Example of a converted bitmap

	Colors
	10.1 Predefined colors
	10.2 The color bar test routine
	10.3 Fixed palette modes
	10.4 Default fixed palette modes
	10.5 Detailed fixed palette mode description
	10.6 Custom palette modes
	10.7 Modifying the color lookup table at run time
	10.8 Color API
	10.9 Basic color functions
	10.10 Index & color conversion
	10.11 Lookup table (LUT) group

	Execution Model: Single Task / Multitask
	11.1 Supported execution models
	11.2 Single task system (superloop)
	11.2.1 Description
	11.2.2 Superloop example (without emWin)
	11.2.3 Advantages
	11.2.4 Disadvantages
	11.2.5 Using emWin
	11.2.6 Superloop example (with emWin)

	11.3 Multitask system: one task calling emWin
	11.3.1 Description
	11.3.2 Advantages
	11.3.3 Disadvantages
	11.3.4 Using emWin

	11.4 Multitask system: multiple tasks calling emWin
	11.4.1 Description
	11.4.2 Advantages
	11.4.3 Disadvantages
	11.4.4 Using emWin
	11.4.5 Recommendations
	11.4.6 Example

	11.5 GUI configuration macros for multitasking support
	11.6 Kernel interface routine API

	Virtual screen / Virtual pages
	12.1 Introduction
	12.2 Requirements
	12.3 Configuration
	12.3.1 Sample configuration

	12.4 Samples
	12.4.1 Basic sample

	12.5 Virtual screen API

	Keyboard Input
	13.1 Description
	13.1.1 Driver layer API
	13.1.2 Application layer API

	Foreign Language Support
	14.1 Unicode
	14.1.1 UTF-8 encoding
	14.1.2 Unicode characters
	14.1.3 UTF-8 strings
	14.1.4 Unicode API

	Display drivers
	15.1 Available drivers and supported display controllers
	15.2 CPU / Display controller interface
	15.2.1 Full bus interface
	15.2.2 Simple bus interface
	15.2.3 4 pin SPI interface
	15.2.4 3 pin SPI interface
	15.2.5 I2C bus interface
	15.2.6 Non readable displays

	15.3 Detailed display driver descriptions
	15.3.1 LCDLin driver
	15.3.2 LCD667XX driver
	15.3.3 LCDTemplate driver
	15.3.4 LCDNull driver

	15.4 LCD layer and display driver API
	15.4.1 Display driver API
	15.4.2 Driver routines
	15.4.3 Callback routines
	15.4.4 LCD layer routines

	Timing and Execution-Related Functions
	16.1 Timing and execution API

	Low-Level Configuration (LCDConf.h)
	17.1 Available configuration macros
	17.2 General (required) configuration
	17.3 Initialisation of the controller
	17.4 Display orientation
	17.5 Color configuration
	17.6 Simple bus interface configuration
	17.6.1 Macros used by a simple bus interface
	17.6.2 Example of memory mapped interface
	17.6.3 Sample routines for connection to I/O pins

	17.7 3 pin SPI configuration
	17.7.1 Macros used by a 3 pin SPI interface
	17.7.2 Sample routines for connection to I/O pins

	17.8 4 pin SPI configuration
	17.8.1 Macros used by a 4 pin SPI interface
	17.8.2 Sample routines for connection to I/O pins

	17.9 I2C bus interface configuration
	17.9.1 Macros used by a I2C bus interface
	17.9.2 Sample routines for connection to I/O pins

	17.10 Full bus interface configuration
	17.10.1 Macros used by a full bus interface
	17.10.2 Configuration example

	17.11 Virtual display support
	17.12 LCD controller configuration: COM/SEG lines
	17.13 Configuring multiple display controllers
	17.13.1 Macros used by the distribution layer
	17.13.2 Hardware access
	17.13.3 COM/SEG line configuration
	17.13.4 Configuration example

	17.14 COM/SEG lookup tables
	17.15 Miscellaneous

	High-Level Configuration (GUIConf.h)
	18.1 General notes
	18.2 How to configure the GUI
	18.2.1 Sample configuration

	18.3 Available GUI configuration macros
	18.3.1 GUI_MEMCPY
	18.3.2 GUI_MEMSET
	18.3.3 GUI_TRIAL_VERSION

	18.4 Runtime configuration
	18.4.1 Memory requirements
	18.4.2 Available GUI configuration routines

	18.5 Runtime configuration
	18.6 GUI_X routine reference
	18.6.1 Init routines
	18.6.2 Timing routines
	18.6.3 Kernel interface routines

	18.7 Debugging
	18.8 Dynamic memory
	18.9 Special considerations for certain Compilers/ CPUs
	18.9.1 AVR with IAR-Compiler
	18.9.2 8051 Keil compiler and other 8-bit CPU compilers

	Performance and Resource Usage
	19.1 Memory requirements
	19.1.1 Memory requirements of the GUI components
	19.1.2 Stack requirements

	Support
	20.1 Problems with tool chain (compiler, linker)
	20.1.1 Compiler crash
	20.1.2 Compiler warnings
	20.1.3 Linker problems

	20.2 Problems with hardware/driver
	20.3 Problems with API functions
	20.4 Problems with the performance
	20.5 Contacting support
	20.6 FAQ’s

	Index

