
Controlling a PSoC Stick from a PC Web Browser Using a Serial

Link

Veloria Pannell, Eric Ponce

August 2024

1 Overview

This tutorial covers the basic hardware, firmware, and software required to control the PSoC Stick with
a webpage through a serial link. The PSoC Creator 3.3 workspace along with the HTML, CSS, and
JavaScript files can be found on the course website.

This manual and webpage branches from the “Controlling a PSoC Big Board from a PC Web Browser
Using a Serial Link” manual, adapting the demo to accommodate the PSoC Stick (CY8CKIT-059 PSoC
5LP Prototyping Kit) instead of the PSoC Big Board (CY8CKIT-050 PSoC 5LP Development Kit).
Working with the PSoC stick is more complicated than the PSoC big board, thus it is important to start
with the big board demo prior to beginning this demo. While some information will be repeated in this
manual, it will be focused on the changes relevant for configuring with the PSoC Stick. Refer to the Big
Board Demo’s manual for the complete context and documentation of the Web-Serial interfacing.

Because the PSoC Stick connects to the PC with a USB cable, instead of a USB-to-RS232 Serial
Kable, it uses a separate UART macro in PSoC Creator. This macro receives and transmits information
differently than the default UART block, requiring us to handle communication differently with new
JavaScript and Creator code.

Figure 1: PC connected to PSoC Stick

1



1.1 How it works

The basic usage of this webpage is the same as when interfacing with the Big Board. The “Connect” and
“Disconnect” buttons establish/disestablish a serial connection with the PSoC Stick, exactly the same as
with the Big Board. Similarly, the slider will change the brightness of LED1 on the Stick, and text sent
with the text box will be echoed by the PSoC to the Device Log.

Figure 2: The webpage

2 Hardware

You will need your PSoC 5LP Stick and a mini-USB cable for both power and the serial connection. This
version requires extra configuration for the USBUART Creator component; the necessary instructions
are provided in the following sections. Refer to the Full Speed USB (USBFS) datasheet for anything
this manual does not include (link at end of document). The Creator components and configurations are
shown in more detail below (figures 3-6).

2.1 PSoC Board and Creator

After programming your stick, disconnect the KITPROG USB end and connect the mini-USB end to a
USB port on a PC. LED1 is assigned to P2[1]; the USBUART is by default assigned to P15[7] and 15[6].

2



Figure 3: PSoC Stick Setup

For the Creator schematic, the required component blocks include a CDC-configured USBFS, a PWM,
a clock, and an LED. The USBFS module can be found in the Cypress Component Catalog under
Communications > USB > USBUART (CDC Interface).

Figure 4: Example PSoC Creator Top-level Schematic and Pin Editor

3



Figure 5: PWM Configuration

The PWM configuration is the same as in the other demo, but the UART is changed from the default
UART block to a USBUART macro, which is a preset USBFS Component configured to implement a
CDC interface (information below).

2.2 Clock Configuration for USBUART

The USBFS macro is highly configurable and can accommodate several different communication inter-
faces. In this case, we are using a Communications Device Class (CDC) Interface. Relevant information
for CDC interfacing from the datasheet (i.e., configuration, API, variables, etc.) exists in the USBUART
(CDC) section on pages 90-103.

Due to the stringent clock requirements of the USBFS component, particular settings are required for
different PSoCs; this is covered in the “Quick Start” section on page 2 of the USBFS datasheet. Once all
the clock requirements are met, click Build to generate the APIs. You can use figure 6 below to help
guide you through Creator’s system clock menu and the configuration popup. The labeled steps on the
figure coincide with the 3 required clock settings for PSoc 5LP devices.

4



In order to get to the system clock configuration menu, navigate to the .cydwr file and select the ‘Clocks’
tab at the bottom. In order to change the clock values, select one of the clocks you want to change and
select the ‘Edit Clock...’ button. For any PSoC 3 or PSoC 5LP devices (i.e., the stick), there are three
clocks you need to set manually:

1. IMO: set to 24 MHz

2. ILO: set to 100 kHz

3. USB: Enable and select IMOx2 to achieve 48 MHz

Figure 6: System Clocks Menu & Configuration Popup

5



3 Firmware

If you navigate to main.c, you will see that we are sending and receiving data using PSoc Creator’s
USBUART macro. Received data either alters the PWM component or echoes back to the PC. Upon
device reset (either after re-programming or pressing the SW3 Button), the USBUART and PWM blocks
are initialized, the LED is turned off, and the USBUART transmits “ *Device Reset* ,” which is printed
on the Device Log on the webpage. The Stick, unlike the Big Board, fully disconnects from the webpage
when it is reset, so you will receive a popup on the webpage and need to reconnect to the device with
the ‘Connect’ button in order to continue communication with the device.

Instead of receiving information byte-by-byte like the default UART block, the USBUART macro
receives information in packets of arbitrary length up to 64 bytes of data. For each packet of data, the
char variable indicator , holds the first byte received and is checked to decide how to handle the data,
detailed in Figure 7 below and throughout the rest of the manual. An indicator char of “t” is for text
and “l” is for LED values (stored in the macros TEXT and LED ).

Figure 7: The main loop in the C code

Besides initialization, the main function only has 3 lines. First, we check if the USBUART is ready to
send more data to the PC with the API call USBUART DataIsReady()) , which returns a nonzero value

if the Component received data or received a zero-length packet.

1: if (0! = USBUART DataIsReady())

To receive data, we use the API call USBUART GetAll() , which gets all bytes of received data from
the input buffer and places them into a specified data array. This function takes in a pointer to an array
where it will store the received data and returns the number of bytes received.

2: count = USBUART GetAll(pRxDataBuffer);

6



Now that we have the entire input buffer and the number of bytes we want to read, we can call the
helper function handle() to handle the data, which takes in the pointer to our array of data and the

amount of data received; the pointer is type-casted to a char* in order to use the strcmp() function
to compare strings.

3: handle((char*)pRxDataBuffer, count);

Depending on the value of indicator , handle() will either update the PWM component or echo
the received chars with the USBUART component as detailed below.

3.1 Sending Text

Clicking the “Send Data” button will send “t”, followed by the remainder of the user’s typed text. When
received, if indicator is “t”, the text is returned as an echo (printed in Device Log) with the API call:

USBUART PutData((pRxDataBuffer+1, count - 1));

The API call USBUART PutData() takes in a pointer to an array and a number of bytes; it sends the

inputted number of bytes from the array indicated by the pointer. In our case, since our indicator is
not a part of the user text we do not want to echo it. To do so, we increment the pointer to the input
buffer and decrement count, the number of received bytes.

3.2 Adjusting LED Brightness

When you change the value on the slider, the webpage sends “l” to the PSoC followed by the new LED
value. When received, if indicator is “l”, the PSoC updates the PWM’s compare value with the API
call:

PWM WriteCompare(*(pRxDataBuffer+1));

Updating the PWM’s compare value alters its duty cycle; varying the duty cycle alters our perceived
brightness of the LED. Here, we move our pointer to the byte after our indicator and then dereference it
in order to access the value stored at the memory location the pointer points to.

4 Helpful Links

• Chrome Developer Docs – https://developer.chrome.com/docs/capabilities/serial

• Web Serial API Docs – https://wicg.github.io/serial/

• MDN Web Docs – https://developer.mozilla.org

• PWM datasheet – https://www.infineon.com/dgdl/Infineon-Component PWM V2.20-Software+
Module+Datasheets-v03 03-EN.pdf?fileId=8ac78c8c7d0dS8da4017d0e801c7611bd

• Full Speed USB (USBFS) datasheet – https://www.infineon.com/dgdl/Infineon-Component USBFS V3.2-
Software%20Module%20Datasheets-v03 02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e818d2f1332

7

https://developer.chrome.com/docs/capabilities/serial
https://wicg.github.io/serial/
https://developer.mozilla.org/en-US/
https://www.infineon.com/dgdl/Infineon-Component_PWM_V2.20-Software+Module+Datasheets-v03_03-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e801c7611bd
https://www.infineon.com/dgdl/Infineon-Component_PWM_V2.20-Software+Module+Datasheets-v03_03-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e801c7611bd
https://www.infineon.com/dgdl/Infineon-Component_USBFS_V3.2-Software%20Module%20Datasheets-v03_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e818d2f1332
https://www.infineon.com/dgdl/Infineon-Component_USBFS_V3.2-Software%20Module%20Datasheets-v03_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e818d2f1332

	Overview
	How it works

	Hardware
	PSoC Board and Creator
	Clock Configuration for USBUART

	Firmware
	Sending Text
	Adjusting LED Brightness

	Helpful Links

