FFT Manual

Leviticus Norman, Veloria Pannell, Dylan Brooks

August 2024

1 Overview

This tutorial shows how to configure the PSoC to perform a fast Fourier transform and read the
results over a Serial connection. This tutorial was made for the big board. The particular FFT
algorithm we are using is from Numerical Recipes in C. It takes an array and overwrites it with the
FFT of the array. Read carefully. There are many places for you to configure the PSoC incorrectly
or use the algorithm incorrectly.

You can find instructions on how to set up the PSoC to convert floats to strings in section 3.1.

2 Hardware

The project only uses two pins to talk over UART. These are the Rx pin, which is connected to
P3.1 and the Tx pin, which is connected to P3.0. Refer to the wiring diagram below:

|Pa_-5 P3_ 4| -')

P37 Pa S ! r_n

Figure 1: Pinout

3 Cypress Schematic

The project only uses a UART block. The UART block is configured to 9600 bps as it has been
for the other UART connections within the class.

UART- 1
UART

R 1 fl——rx txtf———fu] T _-1

t_interrupti=
r¥_interrupt|=

tx_en=
[Hreset

9600 bps

Figure 2: Cypress Schematic

3.1 WARNING IMPORTANT READ!!

By default, the PSoC cannot directly cast floats to strings. One way to do this is with the sprintf ()
function in the C standard input and output library (stdio.h). Casting a string to a float is a
memory expensive operation and microcontrollers are often memory constrained, so PSoC Creator
has removed sprintf () from the stdio library by default. Thus, if the user would like to utilize
sprintf () in their program, they need to inform the PSoC Creator compiler to include sprintf ()
at compile time and to allocate more of the PSoC’s internal memory to the heap for calculation
purposes. First we need to increase the heap size so we have enough dynamic memory to perform
float to string conversion. Then we're going to change some settings in our compiler so that our
PSoC has the necessary library to convert floats to strings. (Note: In the project provided with
this document these steps have already been done. If you create a new project DO NOT forget to
follow these instructions. Failure to do so will not provide error messages. Instead your program
will compile and program normally, but just not work without any clear indication as to why.)

1. Navigate to PSoC creator and load the project
2. Open the Design Wide Resources file (ends in .cydwr)
3. Navigate to the section labeled System

StartPage man.c FFT_Basic.oydwr |

CYBCSEBERAXI-LPDIS
100-TOFP

ceeere b BRARRnanad

PIdERARpRec iR AR A IAR

frrrett
CRERE R R
' :

. Pins [N\ Ansiog | (&) Cods | 3% Intenpts E‘Ewi ¥ System | B Drectives | (3] Flash Seasity | 2 EEPROM

4. Find the heap size and change the value to “0x0800” (Note: If you are experiencing abnormal
behaviour when performing the FFT on larger sized arrays you can try further increasing the
heap size)

*FFT_Basic.cydwr | main.c ~arx|
> Reset | Expand | "1 Collapse
Option © Value
@
Deviee Configuration Mode Compressed v

Enable Error Correcting Code (ECC)

Store Configuration Data in ECC Memory

Instruction Cache Enabled

eeeoc

Enable Fast IMO During Startup

Unused Bonded 10 Allow but wam v

Heap es) 0x0800
-+ Stack Size (bytes)
Includ CMSIS Core Peripheral Library Files []
Programming)\ Debugging
Debug Select SWD-+SWV (serial wire debug and viewer)
Enable Device Protection [m]
Embedded Trace (ETM) [m]
Use Optional XRES [m]
Operating Conditions
Variable VDDA [m]
VDDA (V) 50
VDDD (V) 50
VDDIOO () 50
VDDIOT (V) 50
VDDIO2 (V) 50
VDDIO3 (V) 50
Temperature Range -40C- 85/125C ~

The number of bytes to reserve for the Heap,

@ Prs | N\, Ansleg | (&) Clocks | #Z Inteupts | Ug DVA), B System |. g Directves | (2] Flash Security | [E2 EEPROM | q

v[a »

5. Click on Project — Build

Eile Edit View

Settings

Project | Build Debug Tools Window Help

E!‘D‘E}ﬁaﬂ New Item... 14% ~ (

LﬂH - w’g d _] Add Component [tem.. 0 -

Workspace Explorer(| ::.|| Existing ltem.. Basic.cyc
=

s

3 Workspace 'FFT' (
53 P3] Project 'FFT' [
= Pa] Project "FFT_

4P FFT_Basic.
=L Header Fil
- be[n) cyapic
. [n) FFTh
EHLD Source File
- ble) FRTc
- L[6) mainc
EHL Generated
B PSoC5
B oy

L

EEEEOLL

Import Component...

Update Components (FFT_Basic)...

Remove From FFT_Basic

Unlcad\Reload Project

Mew Folder

Show All Files

Set As Active Project

Set As Jop Compenent

Dependencies...
Build Order...

Device Selector...

Archive Workspace/Project...
ﬂ Export to IDE (FFT_Basic)...

ﬁ- FFT_Basic Resources

| Build Settings...

El Properties...

T I

6. In the left hand menu, navigate to ARM GCC 4.9-2015-ql-update — Compiler —
Linker

Build Settings ? X
Configuration: Debug (Active) v
Toolchain: ARM GCC 4.3-2015q1-update ~ | Processor Type CortexM3
[=)- FFT_Basic v Code Generation
[#- Code Generation Custom Code Gen Options
[#- Debug Skip Code Generation False
[~ Customizer ~ Fitter
[=- ARM GCC 4.9-2015q1updz Custom Fitter Options
[+~ General v Synthesis
[+)- Assembler Custom Synthesis Options
#- Compiler Quiet Output True
ﬁ Synthesis Goal Speed
Synthesis Optimization Effort Exhaustive
L Vitual Node Substittinn | evel 3
Custom Code Gen Options
Custom arguments to control the AP| code generator

oo

7. Under Additional Libraries include ”m” to include the C math library. Additionally, ensure
Use newlib-nano is set to False and Use newlib-nano Float Formatting is set to True.

Build Settings ? X
Configuration: Debug (Active) ~
Toolchain: ARM GCC 4.9-2015q1-update v | Processor Type CortexM3
- FFT_Basic v
[Code Generation itional Libraries m
Debug jtional Library Directories
[Customizer Addttional Link Files
- ARM GCC 4.9-2015q1-updz Create Map File True
o3 General Custom Linker Script
[Assembler Use Default Libraries True
& Compiler Use newlib-nano F:
[#- Linker Use newlibnano Float Formatting ~ True
Additional Libraries
Additional libraries to link to the executable being created. The linker searches a
standard list of directories plus additional specffied directories for the specfied librari...

“mcpu=cortex-m3 mthumb -g ffunction-sections -Og fat#to-objects 4m -L
Generated_Source\PSoC5 -W1 -Map, ${Output Dir})/${Project ShortName} map -T
Generated_Source\PSoC5\cm3gce Id u _printf_float -W1,~gc-sections

- o

4 FFT

You can find the FFT algorithm we use as well as others in Numerical Recipes in C. It was written
by N. M Brenner originally published in Three Fortran Programs that Perform the Cooley-tukey
Fourier Transform at Lincoln Labs. We have implemented the most general algorithm that will
work for any real or complex signal whose length is an integer power of two.

The FFT takes three inputs, a complex array containing the sampled signal, the number of
samples, and sign. The sign parameter is an integer indicating if you’re performing the FFT or the
inverse FFT. 1 corresponds to the FFT and -1 corresponds to the inverse FFT.

In order to represent complex numbers in C we initialize an array that is twice the length of
our signal. Elements at even indices of the array corresponds to real values, while elements at odd
indices correspond to imaginary values. An example of this notation is shown below.

a + bi
c+di [a,b,c, def..]
e + fi

The length of the signal must be an integer power of two. If your signal is not an integer power
of two, you can append zeroes to the end of your signal until it is.
The order of the output of the FFT is not intuitive. Refer to the diagram below to understand

the output of the FFT, where N refers to the length of the signal and A refers to the time between
samples.

(1) real () real
___________ :G rFr———"-"—"—"—-"—-—-- -= (j
(2) imag ! (@) imag f
@ real @) real 1 1
bm e r=A e f=—
@ imag @ imag [NA
< s
= | < = = | < :
(o] (]
= =
e b ® imag || NA
= =
= 0 g real 1
5 H | e =====| f=4—— (combination)
5 2 | | imag =
2|2 - =
G imag |77 Na
real
——_———— t=(N-2)A N i
@-p imag 3 :
real N real '
——————————— r=(N—- I, = —
@ Imag @ imag f NA

5 Firmware

As long as you follow ALL other instructions in this manual, using the FFT is relatively simple.

1. Begin by defining your constants and arrays to store your signals (Note: Sampling Frequency
is not used in the function four1(); it is only used in later functions that write the results).

float DCData[2*N]:

float HarmonicData[2*N];
float HarmonicData2 [2*N]:;
float NyguistData[2*N]:
float CosineData[2*N]:
float CosineData2l2*Nl:

#define N 8
#define samplingFrequency 8
#define pi 3.1415526535859783

2. Fill your arrays, keeping in mind that elements at even indices refer to the real part of your
signal, while elements at odd indices refer to the imaginary part (Note: Most signals are real,
which means your array will most likely contain zero in the odd elements).

for (i

{

= 0; i < 2*N; i++)

if (1%2 == 0)

{

else

DCData[i] = 1.0;

HarmonicData[i] = sin((pi/8)*1i):
HarmonicData2 [1] = sin((pi/4)*1):
NygquistNumber#*=-1;

NyquistData[i] = NyguistNumber:;
CosineData[i] = cos((pi/8)*i):
CosineDataZ[1i] = cos((pi/4)*1);

DCData[i] = 0.0;
HarmonicData[i] = 0.0
HarmonicData2[i] = 0.
NyguistData[i] = 0.0;
CosineData[i] = 0.0;
CosineData2[i) = 0.0;

0:

3. Define the other parameters for the FFT, paying close attention to the types the algorithm
calls for. Remember length is the length of the signal, not the length of the array (Note: The
length of the array should be twice the length of the signal).

int sign = 1;
unsigned long length = N:

4. Finally pass the array and parameters to four1().
fourl (DCData-1l, length, sign):
fourl (HarmonicData-1l, length, =sign):
fourl (HarmonicData2-1, length, sign):
fourl (NygquistData-1l, length, sign):
fourl (CosineData-1, length, sign):

fourl (CosineData2-1, length, sign):

6 Seeing the Result

In order to see the output of the FFT we have included two functions for writing the results of the
FFT over a serial link, WriteData() and WriteMagnitude(). These two algorithms convert the
output of the FFT from floats to strings, calculate the frequency each point corresponds to, and
writes it over the Serial Port.

Both functions take three inputs: the output array of the FFT, the length of the signal (not
the array), and the sampling frequency. The output is sent over the serial port, where it should
be plugged into a computer with a terminal emulator of your choice (PuTTY, TeraTerm, etc.).
WriteData() simply writes the output of the FFT, while WriteMagnitude () calculates the Mag-
nitude for each point before writing over serial. An example of the output in a terminal emulator
is below.

B8 COMT - PuTTY

START MaG:

7 Helpful Links

° Website for Numerical Recipes in C. We used the fourl algorithm
in the Third Edition. There are detailed descriptions of how the algorithm works, alternative
FFTs, and a general background in FFTs. You can read the Third Edition for free.

° Documentation for sprintf. For more de-
tails on all of sprintf ()’s parameters refer to

8 Addendum and Debugging

If you're having difficulty with the output of the FFT refer to the images and captions below to
better understand what could be causing your problem.

o If the output of your FFT looks like the image below you probably didn’t set Use newlib-
nano Float Formatting from False to True. Refer to step 7 in section 3.1.

e If the output of your FFT looks like the image below you probably don’t have enough memory
to perform sprintf (). Make sure you followed step 4 in section 3.1. If you did and are still
experiencing problems try increasing your heap size even further.

STARRT DATH:

———1Eal DAILI-———

10

https://numerical.recipes/
https://cplusplus.com/reference/cstdio/sprintf/
https://cplusplus.com/reference/cstdio/printf/

	Overview
	Hardware
	Cypress Schematic
	WARNING IMPORTANT READ!!!

	FFT
	Firmware
	Seeing the Result
	Helpful Links
	Addendum and Debugging

