OLED Graphics Library User Manual

Sean Kent

July 6, 2020

Contents
Overview 3
Hardware Setup 3
2.1 OLED Schematic 3
2.2 PSoC Hardware Setup 3
Creator Setup 4
3.1 Cypress Schematic 4
3.2 Design Wide Resources 5
3.3 Adding the Graphic Library 6
The oled_t Struct 6
Initialization 7
Drawing Features 8
6.1 Choosing a Color L 8
6.2 Line Thickness 9
6.3 Drawing Exampleo 9
Displaying Bitmap 10
7.1 xbmFiles 10
7.2 Bitmap Modes. 11
7.3 Bitmap Example 11
Displaying Text 12
8.1 The fontt Struct 12
8.2 Font Modes 13
8.3 Font Example 13

9 Graphics Library API 14

9.1

9.2

9.3

9.4

Initialization APT oo 14
9.1.1 oledInit() 14
Color API 14
9.2.1 oledSetColor() 14
9.2.2 oled GetColor() 14
9.2.3 oledSetBkColor() 15
9.24 oled GetBkColor() 15
9.2.5 oledSetPenSize() 15
9.2.6 oled GetPenSize() 16
9.2.7 oledClear() 16
9.2.8 oled ClearRect() 16
9.2.9 oled DrawPixel()o 17
9.2.10 oled DrawLine() Lo 17
9.2.11 oled DrawRect() 17
9.2.12 oled_DrawRoundedRect() 18
9.2.13 oled FillRect() 18
9.2.14 oled FillRoundedRect() 19
9.2.15 oled DrawCircle() 19
9.2.16 oled DrawArc() 20
9.2.17 oled DrawPoint() 20
9.2.18 oled_FillCircle() 20
0.2.19 oled FillPie() . . . o o v vt 21
Bitmap APT 21
9.3.1 oled-SetBmMode() 21
9.3.2 oled_GetBmMode() 22
9.3.3 oled_DispBitmap() 22
Text APL 0 o 22
9.4.1 oledSetFont() 22
9.4.2 oledSetTextMode() L 23
9.4.3 oled_GetTextMode() 23
9.4.4 oled DispChar() 23
9.4.5 oled DispString() 24

1 Overview

The OLED graphics library provides a collection of functions for interacting with the display,
including drawing lines and shapes as well as displaying bitmap images and text. This user
manual steps through the process of setting up the OLED and PSoC and describes the basic
structure of the library.

2 Hardware Setup

2.1 OLED Schematic

The OLED and PSoC communicate with eachother via an I?C interface. The PSoC, which
is configured as the master device, sends commands and data to the OLED, which is a slave
device (one of possibly many connected the PSoC). Figure 1 below shows the circuit the
schematic for the OLED module. It’s I2C pins, SCL and SDA, should be connected to
their counterparts on PSoC. The GND pin should be tied to ground and the V. can be
powered off of 3-5 V.

12.0
scL®

PSoC
12,1, N

SDA
+5v ?
! |

Q 9] o] o]
GND VYCC SCL SDA

OLED

Figure 1: OLED Module Schematic

2.2 PSoC Hardware Setup

Figure 2 shows the hardware setup for the PSoC 5LP Prototyping Kit. The boxed, red pins
are used in the example projects. Everything else can be left unconnected or used for other
functions.

P12_7/UART TX
P1226,/UART BX
P12_1/15C SDA
P12_0/I°C 5CL
1325

P3_
EXT REF1*/P3_2
Pa_

P3

P1
P1
P1
P1
P1

1
1
1
]
1
) S
[+
: PI7 P12 /SWDCLE
. P15_0 P10/SWOIO
P15_1 P
I XTAL_OUT */P15_2
I XTALIM */P15_3
I CMOD*/PIS_A
i P15_5
i POCD 5
i PO_I —&/UART RX
: SAR*/PO_2 _7 JUART TX
| EXTREFO*/POT3 P27
SARD*/PO_4 P2_4
' PO P2_5
= i
i PO S
I R -7 P2_2/8
i D P2_1/LE
i)
1

Figure 2: PSoC Hardware Setup

3 Creator Setup

3.1 Cypress Schematic

In order to communicate with the OLED, the PSoC needs to be set up as an I2C master. To
do this, click on the TopDesign.cysch file and drag and drop an I12C Master (Fixed Function
[v3.50]) component into the schematic. Make sure the component’s mode is set to Master.
For the fastest performance, set the data rate to its maximum value of 1000 kbps. The I2C
Master component and its configuration are shown in the figures below.

I2C_OLED
12C

sdal———21 SDA_OLED
sclf— =0 SCL_OLED

Master

Figure 3: I2C Master Component

Configure '12C_OLED' ? x

Name: [12C_OLED

‘,")General ‘ Advanced |~ Buit-in

Mode: Master ~
Data rate (kbps): [1000 o] Actual data rate: 750 kbps

Enable wakeup from Sleep Mode

Implementation
(® Fixed function Hardware Any Extemal clock
O ubs Software 12C0 Intemal clock
12C1 25
Enable UDB slave fixed placement

— i R =

Figure 4: I?C Master Component Configuration

3.2 Design Wide Resources

The I2C component shown above has two output signals: SCL, the clock signal, and SDA,
the data signal. These outputs must be routed to the correct pins of the PSoC. In the Design
Wide Resources drop down, click on Pins and select ports P12[0] and P12[1] for the I*C’s

SCL and SDA outputs respectively.

Name Port Pin Lock

|:||5CI._OI.ED |p12[n] v|3s v|
[] spa_oen |p1211] ~ |39 v |

Figure 5: Pin Selection

3.3 Adding the Graphic Library

Once the OLED and PSoC are wired up and the PSoC is configured for I2C communication,
it is time to add the graphics library. To included the library in an existing project, two
C source files and two C header files must be added to the project. These files are oled.c,
oled.h, font.c, and font.h and can be found on the course website. To add the files to
your project, copy and paste the four files into your project’s .cydsn folder. Then, in PSoC
Creator, right click on your project’s name in the Workspace Explorer menu and navigate to
Add — Existing Item.... Select the four files you have just copied into the into the .cydsn
folder and add them to your project. They should now appear in the Workspace Explorer
menu under the Header Files and Source Files drop down tabs respectively.

4 The oled_t Struct

Central to the function of the graphics library is the oled_t struct. It is responsible for
storing the current state of the display, library settings (e.g. pen size), and the information
and functions required to communicate with the display. For your reference, the oled_t
definition has been copied below.

If you take a look at the struct definition at the bottom of this section, you will find the
first four member definitions included in the display’s 7-bit I?C address: slaveAddr, followed
by three function pointers, SendStart, SendStop, and WriteByte which together allow the
library to send data to the display. The three function pointers point at functions provided in
the I?C Master component’s API, 12C_MasterSendStart (), I2C_MasterSendStop(), and
I2C_MasterWriteByte () respectively.

Following the slave address and function pointers are a number of setting variables,
including the foreground and background colors, pen size, font, and display modes for bitmap
and text functions. To change a setting, it is recommended to use the provided function
(e.g. oled_SetPenSize()) rather than change the variables directly. For more information
on these setting, check out the the Drawing, Bitmap, and Text sections.

The final member of the structure is a 512 (64 * 8) byte array which keeps track of the
pixel values written to the display’s GRAM (Graphic RAM). The reason this array exists is
because the display does not support writing to individual pixels. Instead, an 8-bit column
of pixels is filled when a byte of graphic data is written to the display, with the LSb of the
byte corresponding to the top pixel of the column. To allow the user to change individual
pixels, the GRAM array is used to help create the byte of graphic data being sent such that
only the pixels that are supposed to be changed are affected by the write. As a user of

library you should not have to touch the GRAM array, it is updated automatically by the
library functions.

If you plan to use more than one display in your project, each display should have its
own instance of an oled_t struct. In this way, state and setting information are kept local
to each display.

//
// oled struct
//
typedef struct {
uint8 slaveAddr; // oled I2C address
uint8 (*SendStart) (uint8 slaveAddr, uint8 R_nW); // function pointer to
I2C_MasterSendStart (). Generates an I2C Start condition and sends the
slave address with the read/write bit

uint8 (*SendStop) (void); // function pointer to
I2C_MasterSendStop() . Generates and I2C Stop condition

uint8 (*WriteByte) (uint8 byte); // function pointer to
I2C_MasterWriteByte(). Send one byte via I2C

uint8 bkColor; // background color

uint8 color; // foreground color

uint8 penSize; // pen size for drawing
functions

const font_t * font; // text font

uint8 bmMode; // bitmap mode

uint8 textMode; // text mode (i.e.
transparent, fill)

uint8 GRAM[OLED_WIDTH+*(OLED_HEIGHT/8)]; // "internal copy" of oled
graphic RAM (GRAM)

} oled_t;

5 Initialization

Before any of the library functions can be used, an instance of the oled_t struct must be
created and the initialization function oled_Init() must be called.

The initialization function serves two main purposes: to setup the newly created oled_t
instance (by assigning values to the member variables) and send a series of commands to
initialize the display. A pointer to the oled_t instance, the slave address of the display,
and the three function pointers for sending data over I?°C (via an I*C Master component)
are passed in as parameters to this function. Note that the function pointers are specific to
the I?C Master component connected to the display. For example, if the I?C Master compo-
nent is named “I2C_OLED”, the pointers passed in would be I2C_OLED_MasterSendStart,
I2C_OLED_MasterSendStop, and I2C_OLED_MasterWriteByte. The remaining members of
the struct are set to default values.

A typical initialization sequence may look as follows. Make sure to start the I?C compo-
nent before calling oled_Init().

//

// include

//
#include "oled.h"

//

// main

//

int main(void)

{
CyGlobalIntEnable; // enable global interrupts
I2C_OLED_Start(); // initialize I2C_OLED
CyDelay(100); // delay while OLED powers on
oled_t oled; // create oled_t instance

oled_Init(&oled, 0x3c, I2C_OLED_MasterSendStart, I2C_OLED_MasterSendStop,
I2C_OLED_MasterWriteByte); // initialize display

for(;;){
// put application code here ...
}

6 Drawing Features

One of the central features of this graphics library is its drawing API, which contains func-
tions for drawing lines and other basic shapes such as rectangles and circles. A full list of
the drawing functions can be found in the API section.

The general operation of these functions should be relatively self-explanatory. For in-
stance, the function

oled_DrawLine(&oled, 32, 16, 96, 48);

draws a line between the points (32, 16) and (96, 48). The first parameter of the function,
&oled, is a pointer to an oled_t instance and specifies which display the function is for.
What is less obvious from the function name and parameters is how to choose the color of
the line and its thickness. These parameters are actually set in the display’s oled_t struct
and apply to all drawing functions.

6.1 Choosing a Color

The color with which lines and shapes are drawn is determined by the value of the foreground
color variable, oled.color, in the oled_t struct. The display itself has two possible pixel val-
ues, black and white, which can be selected by setting oled.color = 0 or oled.color = 1
respectively. There is an exception to this rule when using functions with the word “Clear”
in their name. These functions, such as oled_Clear() and oled_ClearRect(), use the
background color, oled.bkColor, when drawing pixels on the display.

When changing either the foreground color or background color, it is recommended you
use the provided functions, oled_SetColor() and oled_SetBkColor (), rather than reas-
signing the member variables directly.

6.2 Line Thickness

The thickness of a line is controlled by the oled.penSize variable. The pen size can take
on any integer value in the range 0 to 127, with a pen size of 0 drawing the thinnest lines
(1 pixel thick). However, it is not recommended to use excessively large pen sizes, as it
will likely result in the noticeably slower operation of some drawing functions. When using
functions with “Fill” in their name, pen size is not used.

6.3 Drawing Example

The example below shows how to draw a circle with a 20 pixel radius in the center of the
display. In this example, the background color is black and the foreground color is white.
The thickness of the circle is 3 pixels thick, which corresponds to a pen size of 1.

//

// include

//

#include "oled.h"

//

// main

//

int main(void)

{
CyGlobalIntEnable; // enable global interrupts
I2C_OLED_Start(); // initialize I2C_OLED
CyDelay(100) ; // delay while OLED powers on
oled_t oled; // create oled_t instance
oled_Init(&oled, 0x3c, I2C_OLED_MasterSendStart, I2C_OLED_MasterSendStop,

I2C_OLED_MasterWriteByte); // initialize display
oled_Clear(&oled); // clear the display
oled_SetColor(&oled, 1); // set the foreground color
oled_SetBkColor(&oled, 0); // set the background color
oled_SetPenSize(&oled, 1); // set the pen size
oled_DrawCircle(&oled, 64, 32, 20); // draw a circle of radius 20 centered at
(64, 32)

for(;;)4{}

}

7 Displaying Bitmap

Another main feature of the library is displaying bitmap images. A bitmap image is a array
of pixel values which form an image when displayed on a screen. In the specific case of our
OLED display, each value can take on either a 0 or a 1, which correspond to a black or white
pixel respectively.

7.1 .xbm Files

The graphics library expects bitmaps to be in a .xbm file format. Unlike most image files,
.xbm files are stored as C source files. They can therefore be added and included as separate
files in your project or you can copy and paste their contents into an existing file in your
project.

At the top of a .xbm file, there are two #define statements that define the width and
height of the bitmap. Following these preprocessor statements is the image data in the form
of a 1-D array of unsigned chars. Each pixel value is represented by a single bit, thus each
char contains 8 pixel values. Although the array is 1-D, it represents a 2-D grid of pixels.
The top left pixel of this grid corresponds to the LSb of the first char in the array and
extends right LSb to MSb until the width of the grid has been reached. If the width is not
a multiple of 8, the extra bits in the last char are ignored so that the next row starts on the
LSb of the next char.

A 8x8 checkerboard bitmap and its corresponding .xbm file are shown below.

Figure 6: Checkerboard Bitmap

//
// checkerboard .xbm file (saved as checkerboard.h)
//==
#define checkerboard_width 8
#define checkerboard_height 8
static unsigned char checkerboard_bits[] = {

10

0x55, Oxaa, 0x55, Oxaa, 0x55, Oxaa, 0x55, Oxaa };

If you are using an application such as GIMP to create a bitmap image, you may notice
that when you export the image as a .xbm file the black pixel get saved as 1’s and the white
pixels get saved as 0’s. For instance, the image of the checkerboad above would be saved as

static unsigned char checkerboard_bits[] = {
Oxaa, 0xb55, Oxaa, 0xb5, Oxaa, 0x55, Oxaa, 0x55 };

instead of as

static unsigned char checkerboard_bits[] = {
0x55, Oxaa, 0x55, Oxaa, 0x55, Oxaa, 0x55, Oxaa };

7.2 Bitmap Modes

When displaying bitmaps, there are several modes to choose from which determine how the
bitmap is displayed. The mode can be changed using the function oled_SetBmMode (). The
available modes are:

1. OLED_BM_NORMAL: The bitmap is displayed as specified in the image data array.
2. OLED_BM_INV: The bitmap displayed with pixels values inverted.

3. OLED_BM_WHITE_TRAN: White pixels in the bitmap are displayed in the current fore-
ground color. Black pixels in the bitmap are left transparent (the current pixel values
at these locations are not overwritten when the bitmap is displayed).

4. OLED_BM_BLACK_TRAN: Black pixels in the bitmap are displayed in the current fore-
ground color. White pixels in the bitmap are left transparent (the current pixel values
at these locations are not overwritten when the bitmap is displayed).

5. OLED_BM_WHITE_FILL: White pixels in the bitmap are displayed in the foreground color.
Black pixels are displayed in the background color.

6. OLED_BM_BLACK_FILL: Black pixels in the bitmap are displayed in the foreground color.
White pixels are displayed in the background color.

7.3 Bitmap Example

The following example code displays the checkerboard bitmap with its top left corner located
at (0, 0). In this example, the image is included as a C header file called checkerboard.h.

//
// include

//
#include "oled.h"
#include "checkerboard.h"

//

11

// main

//
int main(void)
{
CyGloballntEnable; // enable global interrupts
I2C_OLED_Start(); // initialize I2C_OLED
CyDelay (100) ; // delay while OLED powers on
oled_t oled; // create oled_t instance
oled_Init(&oled, 0x3c, I2C_OLED_MasterSendStart, I2C_OLED_MasterSendStop,
I2C_OLED_MasterWriteByte) ; // initialize display
oled_Clear(&oled) ; // clear the display
oled_SetBmMode(&oled, OLED_BM_NORMAL); // set bitmap mode
oled_DispBitmap(&oled, 0, O, checkerboard_bits, checkerboard_width,
checkerboard_height) ; // display bitmap
for(;;){}
}

8 Displaying Text

The graphics library also includes basic features for displaying text. In many ways, it is
simply an extension of of the bitmap display features, as text characters are themselves
bitmaps.

The library includes functions for displaying individual characters as well as strings of
text. The font used for the characters is determined by the oled.font setting in the oled_t
struct and can be changed using the function oled_SetFont ().

8.1 The font_t Struct

Information about a font, including its all of its bitmap characters, is contained in a font_t
struct, defined below.

//

// font struct

//

typedef struct {
const uint8 width; // width of a character (in pixels)
const uint8 height; // height of a character (in pixels)

const uint8 characters[95][32]; // 2-D array of ASCII characters
} font_t;

The struct is comprised of three members. The first two, width and height, define the
width and height of a single character bitmap. Each character bitmap in a given font must
have the same width and height. The third member, characters, is a 2-D array of character
bitmaps. The array is designed to contain the block of 95 ASCII characters starting with
the Space character and ending with the tilde character.

12

The second dimension in the character array definition (32 in the example above) is
based on the number of bytes it takes to store each character’s bitmap. The default font
uses a 12x16 bitmap for the characters, which requires 32 bytes to store. If you create a font
which needs more bytes, the second dimension must be increased to match the maximum
number of bytes needed.

8.2 Font Modes

Similar to bitmaps, there are several modes to choose from which displaying text. The mode
can be changed using the function oled_SetTextMode (). The available modes are:

1. OLED_TEXT_TRAN: The characters (letters, numbers, etc.) are displayed in the fore-
ground color. The surrounding pixels are transparent.

2. OLED_TEXT_FILL: The characters (letters, numbers, etc.) are displayed in the fore-
ground color. The surrounding pixels are filled with the background color.

8.3 Font Example

The example below displays the string “Hello” with the top left corner of the first character
at (0, 0).

//

// include

//

#include "oled.h"

//

// main

//

int main(void)

{
CyGloballntEnable; // enable global interrupts
I2C_OLED_Start(); // initialize I2C_OLED
CyDelay(100); // delay while OLED powers

on
oled_t oled; // create oled_t instance
oled_Init(&oled, 0x3c, I2C_OLED_MasterSendStart, I2C_OLED_MasterSendStop,
I2C_OLED_MasterWriteByte) ; // initialize display

oled_Clear(&oled); // clear the display
oled_SetTextMode (&oled, OLED_TEXT_TRAN); // set text mode
oled_DispString(&oled, 0, 0, "Hello"); // display "Hello"
for(;;)4{}

}

13

9 Graphics Library API

9.1 Initialization API
9.1.1 oled_Init()

Description
This function initializes the oled_t struct and sends the necessary initialization commands

to the display.

Prototype

void oled_Init(oled_t * oled,
uint8 slaveAddr,
uint8 (*SendStart) (uint8, uint8),
uint8 (*SendStop) (void),
uint8 (*WriteByte) (uint8));

Parameters

oled Pointer to an oled_t struct

slaveAddr | 7-bit [12C address

SendStart | Function pointer to I2C_MasterSendStart ()
SendStop Function pointer to I2C_MasterSendStop()
WriteByte | Function pointer to I12C_MasterWriteByte ()

9.2 Color API
9.2.1 oled_SetColor()
Description

This function sets the foreground color.

Prototype

void oled_SetColor(oled_t * oled,
uint8 color);

Parameters

oled Pointer to an oled_t struct
color Foreground color (0 or 1)

9.2.2 oled_GetColor()

Description
This function returns the current foreground color.

Prototype
uint8 oled_GetColor(oled_t * oled);

14

Parameters

] oled \ Pointer to an oled_t struct

9.2.3 oled_SetBkColor()

Description
This function sets the background color.

Prototype

void oled_SetBkColor(oled_t * oled,
uint8 bkColor) ;

Parameters

oled Pointer to an oled_t struct
bkColor Background color (0 or 1)

9.2.4 oled_GetBkColor()
Description

This function returns the current background color.

Prototype
uint8 oled_GetBkColor(oled_t * oled);

Parameters

’ oled \ Pointer to an oled_t struct

9.2.5 oled_SetPenSize()

Description
This function sets the pen size for drawing operations. A pen size of 0 draws the thinnest
lines (1 pixel thick).

Prototype

void oled_SetPenSize(oled_t * oled,
uint8 penSize) ;

Parameters

oled Pointer to an oled_t struct
penSize Pen size

15

9.2.6 oled_GetPenSize()
Description

This function returns the current pen size.

Prototype
uint8 oled_GetPenSize(oled_t * oled);

Parameters

’ oled \ Pointer to an oled_t struct

9.2.7 oled_Clear()
Description

This functions clears the screen (fills it with the background color).

Prototype
void oled_Clear(oled_t * oled);

Parameters

’ oled \ Pointer to an oled_t struct

9.2.8 oled_ClearRect()

Description
This functions clears a rectangle defined by its upper left corner (x0, y0) and lower right
corner (x1, y1).

Prototype
void oled_ClearRect(oled_t * oled,
int xO0,
int yo0,
int x1,
int y1);
Parameters
oled Pointer to an oled_t struct
x0 Upper left x-coordinate
yO Upper left y-coordinate
x1 Lower right x-coordinate
y1 Lower right y-coordinate

16

9.2.9 oled_DrawPixel()

Description
This function fills the pixel located at (x, y) with the forground color.

Prototype
void oled_DrawPixel(oled_t * oled,
int x,
int y);
Parameters
oled Pointer to an oled_t struct
x x-coordinate of pixel
N y-coordinate of pixel

9.2.10 oled_DrawLine()

Description
This functions draws a line between the points (x0, y0) and (x1, y1).

Prototype
void oled_DrawLine(oled_t * oled,
int xO0,
int yoO,
int x1,
int y1);
Parameters
oled Pointer to an oled_t struct
x0 x-coordinate of the first point
yO y-coordinate of the first point
x1 x-coordinate of the second point
yi y-coordinate of the second point

9.2.11 oled_DrawRect()

Description
This functions draws a rectangle defined by its upper left corner (x0, y0) and lower right
corner (x1, y1).

Prototype
void oled_DrawRect(oled_t * oled,
int xO0,
int yo0,
int x1,
int y1);

17

Parameters

oled Pointer to an oled_t struct
x0 Upper left x-coordinate

yO Upper left y-coordinate

x1 Lower right x-coordinate
y1 Lower right y-coordinate

9.2.12 oled DrawRoundedRect()

Description
This functions draws a rectangle defined by its upper left corner (x0, y0) and lower right
corner (x1, y1). The corners of the rectangle are rounded with radius r.

Prototype
void oled_FillRect(oled_t * oled,
int xO0,
int yo0,
int x1,
int yi1,
int r);
Parameters
oled Pointer to an oled_t struct
x0 Upper left x-coordinate
yO Upper left y-coordinate
x1 Lower right x-coordinate
yi Lower right y-coordinate
. Radius of rounded corners (must be less than
or equal to half the smallest side length)

9.2.13 oled_FillRect()

Description
This functions fills a rectangle defined by its upper left corner (x0, y0) and lower right corner

(x1, y1).

Prototype
void oled_FillRect(oled_t * oled,
int xO0,
int yoO,
int x1,
int y1);

Parameters

18

oled Pointer to an oled_t struct
x0 Upper left x-coordinate

yO Upper left y-coordinate

x1 Lower right x-coordinate
y1 Lower right y-coordinate

9.2.14 oled_FillRoundedRect()

Description
This functions fills a rectangle defined by its upper left corner (x0, y0) and lower right corner
(x1, y1). The corners of the rectangle are rounded with radius r.

Prototype
void oled_FillRect(oled_t * oled,
int xO0,
int yo0,
int x1,
int yi,
int r);
Parameters
oled Pointer to an oled_t struct
x0 Upper left x-coordinate
yO Upper left y-coordinate
x1 Lower right x-coordinate
y1 Lower right y-coordinate
Radius of rounded corners (must be less than
t or equal to half the smallest side length)

9.2.15 oled_DrawCircle()

Description
This functions draws a circle of radius r centered at (xc, yc).

Prototype
void oled_DrawCircle(oled_t * oled,
int xc,
int yc,
int r);
Parameters
oled Pointer to an oled_t struct
xc x-coordinate of the center of the circle
yc y-coordinate of the center of the circle
T Radius of circle

19

9.2.16 oled DrawArc()

Description
This function draws an arc of radius r centered at (xc, yc). a0 and al specify the start and
end angles for the arc.

Prototype
void oled_DrawArc(oled_t * oled,
int xc,
int yc,
int r,
int ao,
int al);
Parameters
oled Pointer to an oled_t struct
x-coordinate of the center of the arc (center
*e of circle)
y-coordinate of the center of the arc (center
ye of circle)
r Radius of arc
a0 Start angle (angle = a0*r/4)
al End angle (angle = al*m/4)

9.2.17 oled_DrawPoint()

Description
This function fills in a circle centered at (xc, yc). The radius of the circle is the current pen
size.

Prototype
void oled_DrawCircle(oled_t * oled,
int xc,
int yc);
Parameters
oled Pointer to an oled_t struct
xc x-coordinate of point
yc y-coordinate of point

9.2.18 oled_FillCircle()

Description
This function fills in a circle with radius r centered at (xc, yc).

Prototype

20

void oled_FillCircle(oled_t * oled,

int xc,
int yc,
int r);
Parameters
oled Pointer to an oled_t struct
xC x-coordinate of the center of the circle
yc y-coordinate of the center of the circle
T Radius of circle

9.2.19 oled_FillPie()

Description
This function fills a circular sector of radius r centered at (xc, yc). a0 and al specify the
start and end angles for the sector.

Prototype
void oled_FillPie(oled_t * oled,
int xc,
int yc,
int r,
int ao,
int al);
Parameters
oled Pointer to an oled_t struct
xc x-coordinate of the center of the circle
yc y-coordinate of the center of the circle
T Radius of circular sector
a0 Start angle (angle = a0*r/4)
al End angle (angle = al*r/4)

9.3 Bitmap API
9.3.1 oled_SetBmMode()

Description
This function sets the bitmap display mode.

Prototype

void oled_SetBmMode(oled_t * oled,
uint8 bmMode) ;

Parameters

oled Pointer to an oled_t struct
bmMode Bitmap display mode

21

9.3.2 oled_GetBmMode()

Description
This function returns the current bitmap display mode.

Prototype
uint8 oled_GetBmMode(oled_t * oled);

Parameters

’ oled \ Pointer to an oled_t struct

9.3.3 oled DispBitmap()

Description
This function displays the given bitmap with its top left corner at (x0, y0).

Prototype

void oled_DispBitmap(oled_t * oled,
int xO,
int yo0,

const uint8 * bitmap,
uint16 width,
uint16 height);

Parameters
oled Pointer to an oled_t struct
x0 x-coordinate for upper left corner of bitmap
yO y-coordinate for upper left corner of bitmap
] Pointer to an array containing pixel values
bitmap
(.xbm format)
width Width of the bitmap (in pixels)
height Height of the bitmap (in pixels)

9.4 Text API
9.4.1 oled_SetFont()

Description
This function sets the font for text displaying operations.

Prototype

void oled_SetFont(oled_t * oled,
font_t * font);

Parameters

oled Pointer to an oled_t struct

font Pointer to a font_t struct

22

9.4.2 oled_SetTextMode()

Description
This function sets the text display mode.

Prototype

void oled_SetTextMode(oled_t * oled,
uint8 textMode);

Parameters

oled Pointer to an oled_t struct
textMode Text display mode

9.4.3 oled_GetTextMode()
Description

This function returns the current text display mode.

Prototype
uint8 oled_GetTextMode(oled_t * oled);

Parameters

’ oled \ Pointer to an oled_t struct

9.4.4 oled_DispChar()

Description
This function displays the character ¢ with its top left corner at (x0, y0). The character is
displayed in the font specified by oled.font.

Prototype
void oled_DispChar(oled_t * oled,
int xO,
int yo0,
const char c);
Parameters
oled Pointer to an oled_t struct
x0 x-coordinate for upper left corner of bitmap
yO y-coordinate for upper left corner of bitmap
c Character to be displayed

23

9.4.5 oled DispString|()

Description
This function displays the string s with the top left corner of the first character at (x0, y0).
The characters are displayed in the font specified by oled.font.

Prototype
void oled_DispString(oled_t * oled,
int xO0,
int yo0,
const char * s);
Parameters
oled Pointer to an oled_t struct
x0 x-coordinate for upper left corner of bitmap
yO y-coordinate for upper left corner of bitmap
s Pointer to the string

24

