
The 8000 Series Swiss Army Knife Manual

Matthew Burns | Eric Ponce

miburns@mit.edu

August 2017

mailto:miburns@mit.edu

1 Overview

The 8000 Series Swiss Army Knife is intended to be a user configurable replacement to

most 8000 series peripherals. It has a data bus, an address bus, and all other supporting

pins to make this PSoC communicate with an 8051 as if it were an 8000 series

peripheral with 16 registers. Several of the registers already have dedicated functions

controlling components such as a Universal Asynchronous Receiver/Transmitter

(UART) component, a Serial Peripheral Interface Master (SPIM) component, an Analog

to Digital Converter (ADC) component, and an SD card communication (EmFile)

component. Several other registers are left unused so that the user can implement their

own 8000 series peripherals.

2 Hardware

This 8000 Series Swiss Army Knife requires only a CY8CKIT-059 PSoC 5LP. Many of

the pins on this PSoC are not (by default) used for this peripheral replacement solution

and are labeled in black on the pinout shown on page one of this manual. The pins that

are used for this replacement solution are labeled with their function in red.

 This PSoC is fitted with an 8-bit data bus, a 4-bit address bus, read (/RD) and

write (/WR) lines, a chip select (/CS) line, and an interrupt (INTR) line to communicate

with the 8051 as if it were an 8000 series peripheral. It also has a reset (RST) line which

controls the software reset of the entire PSoC replacement. This RST line should be

connected to the 8051 reset pin through two 7414 inverters with a .01 uF capacitance on

the 8051 reset line.

*Note: Power (5V) and ground (0V) connections were intentionally left off of the PSoC in the

schematic for clarity.

 In addition to connecting all standard lines for 8000 series communication, the

three GND pins of the PSoC should connect to the ground of the 8051 system. VDD

and VDDIO should be tied to +5VDC.

3 Software

UART:

 Wiring:
The TX and RX pins of the UART module are accessible through P2.0 and P2.1 on the

PSoC respectively.

 Interface:

The UART module makes use of the first three of the 16 addressable registers on the

PSoC: address 0x0, address 0x1, and address 0x2.

Address 0x0 is the control register for the UART module. It allows the user to

turn the UART module on and off, set the baud rate, and manipulate the receive /

transmit flags and the receive / transmit interrupt enable bits.

Address 0x1 is the UART write register. Writing to this register causes the UART

module to transmit the byte that was written to this register provided that the UART

module is on and is not currently transmitting a byte.

Address 0x2 is the UART read register. Reading this register returns the byte that

was most recently received by the UART module.

All of these registers have a reset value of 0x00.

Table of 16C450 Registers

Address: Register Name: Reset Value: Function:

0x0 UART Control Register 0x00 The control register

allows you to turn the

UART module on and

off, set the baud rate,

and control the UART

interrupts.

0x1 UART Transmit Buffer 0x00 The transmit buffer is

the register you write to

when you wish to

transmit a byte.

0x2 UART Receive Buffer 0x00 The receive buffer holds

the value of the UART

module’s most recently

received byte.

Control Register:

7 6 5 4 3 2 1 0

TF RF TIE RIE M3 M2 M1 M0

The bits of the control register (0x0) are set up as follows:

Bit 7: Transmit Flag. This bit is automatically set when the UART component

finishes transmitting a byte. Both this bit and the receive flag (bit 6) need to be

cleared to reset the interrupt line if this UART component sent a falling edge

interrupt to the 8051.

Bit 6: Receive Flag. This bit is automatically set when the UART component

receives a byte. Both this bit and the transmit flag (bit 7) need to be cleared to

reset the interrupt line if this UART component sent a falling edge interrupt to the

8051.

Bit 5: Transmit Interrupt Enable. If this bit is set, the PSoC will send a falling

edge interrupt to the 8051 upon completion of a UART transmit.

Bit 4: Receive Interrupt Enable. If this bit is set, the PSoC will send a falling

edge interrupt to the 8051 upon receiving a byte.

Bit 3: The lower nibble of this control register is used to turn on and off the

UART module and set the baud rate. (M3)

Bit 2: (M2)

Bit 1: (M1)

Bit 0: (M0)

The UART mode is used to control the baud rate of the UART module and is

determined by the lower four bits of the UART control register. Below are the possible

nibble values to control the UART mode:

M3: M2: M1: M0: Mode:

0 0 0 0 UART off

0 0 0 1 300 Baud

0 0 1 0 1200 Baud

0 0 1 1 2400 Baud

0 1 0 0 4800 Baud

0 1 0 1 9600 Baud

0 1 1 0 19200 Baud

0 1 1 1 38400 Baud

1 0 0 0 57600 Baud

1 0 0 1 115200 Baud

1 0 1 0 230400 Baud

1 0 1 1 9600 Baud

1 1 0 0 9600 Baud

1 1 0 1 9600 Baud

1 1 1 0 9600 Baud

1 1 1 1 9600 Baud

Once the control word is set up in the control register, the UART module is set up to

receive and write bytes. In order to keep track of the state of the UART module, the

user can either poll the receive / transmit flags, or the user can set up an interrupt. If the

PSoC generates an interrupt on the INTR line back to the 8051, the line will drop low

until the user clears the interrupt. The interrupt can be cleared by clearing the TF and

RF bits of the control register.

SPIM:

Wiring:
The SPIM module makes use of the standard four wire SPI interface that includes a

serial clock (SCLK) line, a slave select (SS) line, a master-in slave-out (MISO) line, and

a master-out slave-in (MOSI) line. All four of these connections are located between

P2.2 and P2.5 on the PSoC and are labeled as SPI pins on the pinout found on the first

page of this document.

 Interface:

The SPIM module makes use of the fourth and fifth of the 16 addressable registers on

the PSoC: address 0x3, and address 0x4.

Address 0x3 is the control register for the SPIM module. It allows the user to turn

the SPIM module on and off, set the bit rate, and manipulate the shift flag and the shift

interrupt enable bit.

Address 0x4 is the SPIM buffer. Writing to this register causes the SPIM module

to transmit the byte that was written to this register provided that the SPIM module is on

and is not currently shifting a byte. Reading from this register returns the value that was

most recently shifted into the SPIM module.

Both of these registers have a reset value of 0x00.

Table of SPIM Registers

Address: Register Name: Reset Value: Function:

0x3 SPIM Control Register 0x00 The control register

allows you to turn the

SPIM module on and

off, set the bit rate, and

control the SPIM

interrupt.

0x4 SPIM Buffer 0x00 The shift buffer is the

register you write to

when you wish to shift

out or read in a byte.

Reading the value of

this register after writing

to it returns the value

that was just shifted into

this buffer.

 Control Register:

7 6 5 4 3 2 1 0

SF SIE X X X M2 M1 M0

The bits of the control register (0x3) are set up as follows:

Bit 7: Shift Flag. This bit is automatically set when the SPIM component finishes

shifting out a byte. This bit needs to be cleared to reset the interrupt line if this

SPIM component sent a falling edge interrupt to the 8051.

Bit 6: Shift Interrupt Enable. If this bit is set, the PSoC will send a falling edge

interrupt to the 8051 upon completion of a SPIM shift.

Bit 5: Not used

Bit 4: Not used

Bit 3: Not used

Bit 2: The lower three bits of this control register are used to turn the

SPIM module on and off as well as to set the bit rate. (M2)

Bit 1: (M1)

Bit 0: (M0)

The SPIM mode is used to control the bit rate of the SPIM module and is determined by

the lower three bits of the SPIM control register. Below are the possible values of the

lower three bits that control the SPIM mode:

M2: M1: M0: Mode:

0 0 0 SPIM off

0 0 1 50k Bit Rate

0 1 0 100k Bit Rate

0 1 1 200k Bit Rate

1 0 0 500k Bit Rate

1 0 1 1M Bit Rate

1 1 0 2M Bit Rate

1 1 1 5M Bit Rate

Once the control word is set up in the control register, the SPIM module is ready

to receive and write bytes. In order to keep track of the state of the SPIM module, the

user can either poll the shift flag, or the user can set up an interrupt. If the PSoC

generates an interrupt on the INTR line back to the 8051, the line will drop low until the

user clears the interrupt. The interrupt can be cleared by clearing the SF bit of the

control register.

ADC:

 Wiring:

The ADC makes use of P0.1 and P0.2 on the PSoC. P0.1 is the analog input to the

ADC; it is the voltage level on this line that is converted to a digital value between 0x00

and 0xFF. P0.2 is the internal ADC reference bypass pin; a .1uF capacitor can be placed

between this pin and ground in order to reduce noise for the ADC.

 Interface:

The ADC module makes use of the 16th addressable register on the PSoC – address 0xF.

Beginning a conversion:

Writing any value to register 0xF other than 0x00 will begin an ADC conversion.

Specifically writing 0x01 to this register starts a conversion and enables the external

interrupt to the 8051. This external interrupt line falls low when a conversion completes

and data is ready to be read. Writing any value to this register, including 0x00, clears

the external interrupt line.

Reading the result:

After the conversion is complete, reading from this register returns the value of

the analog to digital conversion.

EmFile SD Card Communication:

Overview:
EmFile is an embedded file system that allows you write to and read from files within an

SD card. In order to run EmFile on the PSoC, libraries must be downloaded from the

SEGGER website and linked to the PSoC project. The libraries are already included

with the 8000_Series_Swiss_Army_Knife PSoC project workspace.

 By default, the linked EmFile libraries allow access to FAT16 file systems and do

not allow for file names that are longer than 8 characters. This can be configured by

changing which EmFile libraries are linked to the project. See the PSoC EmFile data

sheet at http://www.cypress.com/file/135136/download for more information on which

libraries to link.

 Wiring:

The EmFile component makes use of four pins of the PSoC to drive the SD card as an

SPI slave component. The pins are located between P2.6 and P12.6 on the PSoC and are

labeled as EmFile pins in the pinout on the first page of this document.

 Interface:

The EmFile module makes use of the 14th and 15th of the 16 addressable registers on

the PSoC: address 0xD, and address 0xE.

Address 0xD is the control register for the EmFile module. It allows the user to

control the state of the EmFile module.

Address 0xE is the EmFile data register. Writing to this register does different

things depending on the state of the EmFile component. For example, if the EmFile

component is in the “Enter File Name” state (see table below), writing to address 0xE

appends characters to the desired file name of the file to be created or opened. If the

EmFile component is in the “Write” state, writing to address 0xE writes data to the open

file on the SD card. This register can also be used to read data from the SD card file if

the EmFile component is in the “Read” state.

Both of these registers have a reset value of 0x00.

http://www.cypress.com/file/135136/download

Table of EmFile Registers

Address: Register Name: Reset Value: Function:

0xD EmFile State Control

Register

0x00 The control register

allows you to control

the state of the EmFile

Component.

0xE EmFile Data Transfer

Register

0x00 The data register allows

you to send data to and

from the SD card as

well as specify file

names to be opened or

created.

Control Register:

The control register for the EmFile component on the PSoC 8000 Series Swiss Army

Knife controls the state of the EmFile component. The following write values of the

control register (0xD) implement the following changes within the EmFile component.

Write Value: State: Function:

0x1 Enter File Name Writing 0x1 to the EmFile control register sets up the

EmFile component to receive the name of the file to be

accessed in ascii hex through writing to the data register

0xEh. For example... after writing 0x1 to the control

register, one would sequentially write (0x50, 0x41, 0x54,

0x54, 0x45, 0x52, 0x4E, 0x2E, 0x74, 0x78, 0x74) in

order to access the file "PATTERN.txt". The maximum

file name size is 8 characters (bytes).

0x2 Write Writing 0x2 to the EmFile control register sets up the

EmFile component to begin receiving data through

register 0xE and writing it to the file that was specified

while in the "Enter File Name" state. Before sending 0x2

to the control register, one must first write 0x1 and enter

an appropriate file name.

0x3 Read Writing 0x3 to the EmFile control register sets up the

EmFile component to begin sending out data from the

file that was specified while in the "Enter File Name"

state through register 0xE. Before sending 0x3 to the

control register, one must first write 0x1 and enter an

appropriate file name.

0x4 Close File Writing 0x4 to the EmFile control register closes the

open file that was specified while in "Enter File Name"

mode.

0x0 Clear Interrupt Writing this value to the control register is the only value

that can be written to either the control register (0xD) or

the data register (0xE) that does not set the finished flag -

bit 6 within the EmFile control register. Bit 7 of the

EmFile control register is the EmFile interrupt enable bit.

Therefore, in order to reset the interrupt line from a

previous interrupt and enable future EmFile interrupts,

one would write 0x80 to the EmFile control register. In

order to reset the interrupt line from a previous interrupt

and turn off future EmFile interrupts, one would write

0x00 to the EmFile control register. The critical thing is

that the 6th bit is cleared on this write to reset the

interrupt line.

*Note: The upper nibble of the write value to the EmFile State Control Register was not specified

because its value depends on how the user sets the interrupts.

*Note: Writing to a file that already exists will overwrite the file. However, the previous file will not

be deleted before the overwrite occurs. This means that if you overwrite a file with another file of a

smaller size, data from the previous file will be left over at the end of the newly written file.

Bit 7 of the EmFile State Control Register is the EmFile Interrupt Enable Bit. Setting

this bit causes a falling edge interrupt on the INTR line to occur whenever the EmFile

Finished Flag is set. Bit 6 of the EmFile State Control Register is the EmFile Finished

Flag. The EmFile finished flag sets after every operation involving a write to either the

state control or the data register (except writing 0x0 to the state control register)

completes.

 Data Register:

The data register is used for passing data into and out of the EmFile system and the SD

card. It is used to name the file to open (while in "Enter File Name" mode) by writing

the filename to this register byte by byte. It is used to write data into a file

within the SD card byte by byte while within the "Write" mode. This register is also

used to read data from a file within the SD card while within the "Read" mode. A byte

read is completed by writing any value to this register and then reading the value within

this register. By writing to this register while in "Read" mode, we are telling EmFile to

fetch the next byte from the SD card and stuff it into this register so that we can read it.

 Overview of Internal Operation:

The PSoC’s internal PLL output is set to 48 MHz. This is used to drive the system

MASTER_CLK clock. Setting the clock to 48 MHz ensures that the PSoC is able to

perform its functions fast enough to complete its task without interfering too much with

the 8051.

 The PSoC emulates memory mapped registers using DMA accessed memory

locations. Given a command – read to or write from a particular register – DMA block’s

move data to and from the appropriate memory locations. The registers that hold the 16

accessible locations exist within a uint8 array labeled ‘Reg’. This replacement uses an

8-bit wide control register to write data back out to the data bus and status registers to

read data into the ‘Reg’ array as well as to read the address into the ‘Addr’ variable.

 Once the value of the ‘Addr’ variable is changed by a data write, the main loop of

the PSoC code implements the appropriate changes to the programmed peripherals.

Having the main loop control the peripheral hardware makes the code understandable

while having the DMA blocks control the 8000 series communication ensures the timing

specification is not violated.

4 UART Example

To demonstrate this 8000 Series Swiss Army Knife UART module, we will attach it to

an Amulet module and write some software for the 8051 so that every time a button is

pressed on the Amulet module, the character is displayed on the R31-JP Port 1 LED’s as

well as on the monitor’s display.

 After wiring the 8000 series communication portion of this chip to the 8051, all

that is left to do is attach the PSoC’s TX line to the Amulet’s Rx line and the PSoC’s RX

line to the Amulet’s TX line. Be sure to connect the ground of the Amulet module to the

ground of the R31-JP kit and PSoC. Assemble and load the 8051 system with the

following assembly code:

.org 000h

ljmp start

.org 003h
ljmp isr

.org 100h
start:
 lcall init
main:
 sjmp main

init:
; Set up serial communication to the computer
 mov tmod, #20h ; set timer 1 for auto reload - mode 2

mov tcon, #41h ; run counter 1 and set edge trig ints
mov th1, #0fdh ; set 9600 baud with xtal=11.059mhz
mov scon, #50h ; set serial control reg for 8 bit data

 ; and mode 1

 mov IE, #81h ; Fully enable the edge triggered interrupt

 mov dptr, #0xFE00 ; Set up PSoC UART flags for 9600 baud

 mov a, #0x15 ; communication

 movx @dptr, a

 ret

isr:
 mov dptr, #0xFE02 ; Read in the byte from the PSOC
 movx a, @dptr

 mov P1, a

 ; Here I send the byte to the PC

 clr scon.1 ; clear the tx buffer full flag.

 mov sbuf,a ; put chr in sbuf

txloop:
 jnb scon.1, txloop ; wait till chr is sent

 mov dptr, #0xFE00 ; Clear the PSoC UART flags thus clearing

 ; the external interrupt

 mov a, #0x15
 movx @dptr, a

 reti ; Return from interrupt

Once this code is loaded onto and running on the 8051 system, the monitor should be

responsive to presses on the Amulet module.

5 SPIM Example

To demonstrate this 8000 Series Swiss Army Knife SPIM module, we will attach it to an

SD card and read in 16 bytes of raw data located within sector one (the second grouping

of 512 bytes) of the SD card. We will then sequencially flash the 8051’s P1 LED’s with

the 16 different one-byte values that were read from sector one.

 After wiring the 8000 series communication portion of this chip to the 8051, all

that is left to do is wire the SD card to the SPI port. The easiest way to do this is to use a

breakout board like the one found at http://store.linksprite.com/sd-card-breakout-board/.

This breakout board is labeled with VDD, GND, and all four of the SPI connections.

SD cards are 3.3V devices and will be destroyed if you connect them to a 5 volt supply.

However, since this board handles all of the necessary level shifting, we can attach VDD

to 5VDC and wire the SPI connections directly to the SPI port on the PSoC. Once

everything is wired together, assemble and load the 8051 system with the following

assembly code:

http://store.linksprite.com/sd-card-breakout-board/

.org 000h

ljmp start

.org 003h

ljmp isr

.org 080h

.db 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ; Buffer

.db 0x40, 0x00, 0x00, 0x00, 0x00, 0x95 ; CMD0

.db 0x77, 0x00, 0x00, 0x00, 0x00, 0x00 ; CMD55

.db 0x69, 0x00, 0x00, 0x00, 0x00, 0x00 ; ACMD41

.db 0x51, 0x00, 0x00, 0x00, 0x00, 0x00 ; CMD17

; CMD17 reads the first 16 bytes of the block at SD card address

; located at 0xR7, 0xR6, 0xR5, 0xR4 to the scratch-pad memory at 0x30

;;;

;;; ;;;

;;; Main Code Written Below ;;;

;;; ;;;

;;;

.org 300h

start:

 lcall init

main:

 mov R0, #30h

 mov R1, #10h

 mainLoop:

 mov a, @R0

 mov P1, a

 mov R2, #00h ; Wait a second or two so we can see the

 mov R3, #00h ; pattern on the LED’s

 mov R4, #02h

 delay:

 djnz R2, delay

 djnz R3, delay

 djnz R4, delay

 inc R0

 djnz R1, mainLoop

 sjmp main

;;;

;;; ;;;

;;; Main Code Written Above ;;;

;;; ;;;

;;;

;;; ;;;

;;; Initialization Written Below ;;;

;;; ;;;

;;;

init:

; Set up serial communication to the computer

 mov tmod, #20h ; set timer 1 for auto reload - mode 2

 mov tcon, #41h ; run counter 1 and set edge trig ints

 mov th1, #0fdh ; set 9600 baud with xtal=11.059mhz

 mov scon, #50h ; set serial control reg for 8 bit data

 ; and mode 1

 mov IE, #81h ; Fully enable the edge triggered interrupt

 mov dptr, #0xFE03 ; Set the PSOC SPI to 200kBS communication and

 mov a, #0x43 ; turn it on

 movx @dptr, a

 lcall SDinit

 mov R7, #00h ; Read in the block starting at address

 mov R6, #00h ; 0x00000200h - Sector 1

 mov R5, #02h

 mov R4, #00h ; It reads the first 16 bytes into scratch

 ; pad memory starting at 0x30

 lcall CMD17mod ; And dumps the rest!

 ret

SDinit:

 mov R1, #80h ; Here we send 74+ clock pulses to ready the SD

 ; card

 lcall SDSend

 mov R1, #80h

 lcall SDSend

 lcall CMD0 ; Here we send CMD0 to put the SD card in IDLE

 ; mode for a software reset.

 lcall ACMD41 ; Here we send ACMD41 to initialize the SD card

 ; and take it out of IDLE mode.

 ; After this, the card is ready to use.

 ret

;;;

;;; ;;;

;;; Initialization Written Above ;;;

;;; ;;;

;;;

;;; ;;;

;;; ISR Written Below ;;;

;;; ;;;

;;;

isr:

 mov dptr, #0xFE03 ; Clear the PSoC SPI flag thus clearing the

 ; external interrupt

 mov a, #0x43

 movx @dptr, a

 setb 00h

 reti ; Return

;;;

;;; ;;;

;;; ISR Written Above ;;;

;;; ;;;

;;;

;;; ;;;

;;; SD Card Support Subroutines Written Below ;;;

;;; ;;;

;;;

SDSendByte:

; This subroutine sends the value of a over the SPI port and waits till the

; shift is complete.

 mov dptr, #0xFE04

 movx @dptr, a

 clr 00h

 Hold:

 jnb 00h, Hold

 ret

SDSend:

; This subroutine sends 6 bytes of data to the SD card starting

; With the byte stored in 8051 memory location 0x00XX where XX is

; Determined by the value in R1

 mov R2, #0x06

 SDSendLoop:

 mov dph, #00h

 mov dpl, R1

 movx a, @dptr

 lcall SDSendByte

 inc R1

 djnz R2, SDSendLoop

 ret

SDSendScratch:

; This subroutine sends 6 bytes of data to the SD card starting

; With the byte stored in 8051 scratch-pad memory location starting

; at 0x40

 mov R2, #0x06

 mov R1, #0x40

 SDSendLoopS:

 mov a, @R1

 lcall SDSendByte

 inc R1

 djnz R2, SDSendLoopS

 ret

SDRead:

; This subroutine searches for a response from the SD card following a

; SDSend command. It returns with either the first byte of the response or

; a failed response value of 0xFF stored in R2.

 mov R2, #0xFF

 SDReadLoop:

 mov dptr, #0xFE04

 mov a, #0xFF

 lcall SDSendByte

 mov dptr, #0xFE04

 movx a, @dptr

 cjne a, #0xFF, SDReadDone

 djnz R2, SDReadLoop

 mov R2, 0xFF

 ret

 SDReadDone:

 mov R2, a

 ret

CMD0:

; This subroutine sends the CMDO command to the SD card. It makes use of

; SDSend and SDRead to accomplish this. If this command fails, the LED's

; on P1 will show 0x00. If this command succeeds, the LED's will be left

; as 0xFF - as they were at start-up.

 mov R3, #0xFF

 CMD0Loop:

 mov R1, #86h

 lcall SDSend

 lcall SDRead

 cjne R2, #01h, CMD0Error

 sjmp CMD0Done

 CMD0Error:

 mov R1, #80h

 lcall SDSend

 djnz R3, CMD0Loop

 mov P1, #00h

 lcall SDError

 CMD0Done:

 mov R1, #80h

 lcall SDSend

 ret

ACMD41:

; This subroutine sends the ACMD41 command to the SD card. It makes use of

; SDSend and SDRead to accomplish this. If this command fails, the LED's

; on P1 will show 0x41. If this command succeeds, the LED's will be left

; as 0xFF - as they were at start-up.

 mov R3, #0xFF

 ACMD41Loop:

 mov R1, #8Ch

 lcall SDSend

 lcall SDRead

 mov R1, #80h

 lcall SDSend

 mov R1, #92h

 lcall SDSend

 lcall SDRead

 cjne R2, #00h, ACMD41Error

 sjmp ACMD41Done

 ACMD41Error:

 mov R1, #80h

 lcall SDSend

 djnz R3, ACMD41Loop

 mov P1, #41h

 lcall SDError

 ACMD41Done:

 mov R1, #80h

 lcall SDSend

 ret

CMD17mod:

; This subroutine sends the CMD17 command to the SD card. The address

; argument it uses is the values in R7, R6, R5, R4. It saves the read

; values to the buffer space 0x100 to 0x2FF within RAM. It makes use of

; SDSend and SDRead to accomplish this. If this command fails, the LED's

; on P1 will show 0x17. If this command succeeds, the LED's will be left

; as 0xFF - as they were at start-up.

 mov dptr, #0x0098

 mov R0, #40h

 movx a, @dptr

 mov @R0, a

 inc R0

 mov a, R7

 mov @R0, a

 inc R0

 mov a, R6

 mov @R0, a

 inc R0

 mov a, R5

 mov @R0, a

 inc R0

 mov a, R4

 mov @R0, a

 inc R0

 mov dptr, #0x009D

 movx a, @dptr

 mov @R0, a

 mov R3, #0xFF

 CMD17Loop:

 lcall SDSendScratch

 lcall SDRead

 cjne R2, #00h, CMD17Error

 sjmp CMD17Done

 CMD17Error:

 mov R1, #80h

 lcall SDSend

 djnz R3, CMD17Loop

 mov P1, #17h

 lcall SDError

 CMD17Done:

; This part of CMD17 reads data in from the SD card. If this fails, the P1

; LED's will show 0xF0

 lcall SDRead

 cjne R2, #0xFE, ReadError

 clr 01h

 mov R4, #01h

 mov R5, #00h

 mov R7, #00h

 mov R6, #02h

 ReadLoop:

 mov dptr, #0xFE04

 mov a, #0xFF

 lcall SDSendByte

 mov dptr, #0xFE04

 movx a, @dptr

 jb 01h, modSkip

 mov b, a

 mov a, #30h

 add a, R5

 mov R0, a

 mov a, b

 mov @R0, a

 modSkip:

 inc R5

 cjne R5, #10h, modSkip2

 setb 01h

 modSkip2:

 cjne R5, #00h, ReadContinue

 inc R4

 ReadContinue:

 djnz R7, ReadLoop

 djnz R6, ReadLoop

 ret

 ReadError:

 mov P1, #0xF0

 ljmp SDError

SDError:

 sjmp SDError

;;;

;;; ;;;

;;; SD Card Support Subroutines Written Above ;;;

;;; ;;;

;;;

Once this code is loaded onto and running on the 8051 system, we need to set up and

attach the SD card so that we can see meaningful data on the P1 LED’s. This assembly

code for SD initialization is geared for SD cards that are under 2GB in size. Higher

capacity SD cards may require a slightly different initialization process.

 Once you have chosen your SD card, plug it into your computer and run the

DMDE hex editor software provided on the course website. From the Drive drop-down

menu, select Select Drive. Then choose the SD card to open. You should be able to see

the raw data on the SD card in hexadecimal format. The data is separated into blocks of

512 bytes. Your screen should be similar to that of the image below.

As you can see, the line indicated by the red arrow has already been edited for this

example. In order to change the first 16 bytes of block one, you need to select Edit

Mode from the Edit drop-down menu. This will enable you to select the bytes you want

to edit and type in their desired values.

 When you are finished entering the desired byte values, select Apply Changes

from the Drive drop-down menu. Then, you can exit the software and remove your SD

card.

 Plug your SD card into the SD card socket and run the code that you loaded onto

your 8051 system. You should be able to see the HEX values that you loaded onto the

SD card flashing sequencially on the P1 LED’s of the R31-JP.

6 EmFile Example

To demonstrate this 8000 Series Swiss Army Knife EmFile component, we will read in

data from a file called “PATTERN.txt” stored within an SD card. We will then

sequencially flash the 8051’s P1 LED’s with the 16 different one-byte values that were

read from the file on the SD card.

 After wiring the 8000 series communication portion of this chip to the 8051, all

that is left to do is wire the SD card to the EmFile SPI port. The easiest way to do this is

to use a breakout board like the one found at http://store.linksprite.com/sd-card-

breakout-board/. This breakout board is labeled with VDD, GND, and all four of the

SPI connections. Since this board handles all of the necessary level shifting, we can

attach VDD to 5VDC and wire the SPI connections directly to the EmFile SPI port on

the PSoC. Once everything is wired together, assemble and load the 8051 system with

the following assembly code:

http://store.linksprite.com/sd-card-breakout-board/
http://store.linksprite.com/sd-card-breakout-board/

.org 000h

ljmp start

.org 003h

ljmp isr

.org 080h

.db 0x50, 0x41, 0x54, 0x54, 0x45, 0x52, 0x4E, 0x2E, 0x74, 0x78, 0x74

; These bytes are ascii for the file name to be read "Pattern.txt"

;===

.org 100h

start:

 lcall init

main:

 mov R0, #30h

 mov R1, #10h

 mainLoop:

 mov a, @R0

 mov P1, a

 mov R2, #00h ; Wait a second or two

 mov R3, #00h

 mov R4, #02h

 delay:

 djnz R2, delay

 djnz R3, delay

 djnz R4, delay

 inc R0

 djnz R1, mainLoop

 sjmp main

;===

init:

 mov tcon, #01h ; Enable edge triggered interrupts

 mov IE, #81h ; Set the global interrupt enable flag

 mov dptr, #0xFE0D ; Set up PSoC EmFile to accept a file name and

 ; enable the PSoC external interrupt

 mov a, #0x81

 clr 00h

 movx @dptr, a

 lcall hold

 mov R0, #80h

 mov R1, #0Bh

 nameSend:

 ; This sends the name of the file to be read to the SD card -

 ; "PATTERN.txt"

 mov dpl, R0

 mov dph, #00h

 movx a, @dptr

 mov dptr, #0xFE0E

 clr 00h

 movx @dptr, a

 lcall hold

 inc R0

 djnz R1, nameSend

 mov dptr, #0xFE0D ; Set up PSoC EmFile to read data

 mov a, #0x83

 clr 00h

 movx @dptr, a

 lcall hold

 mov R0, #30h

 mov R1, #10h

 dataRead:

; This reads the relevant data from the SD card and stuffs it into the

; scratch-pad memory starting at 0x30

 mov dptr, #0xFE0E

 mov a, #0xFF

 clr 00h

 movx @dptr, a

 lcall hold

 mov dptr, #0xFE0E ; Reads in the first byte of a typed hex

 ; number

 movx a, @dptr

 lcall ascbin

 swap a

 mov R2, a

 mov dptr, #0xFE0E

 mov a, #0xFF

 clr 00h

 movx @dptr, a

 lcall hold

 mov dptr, #0xFE0E ; Reads in the second byte of a typed hex

 ; number

 movx a, @dptr

 lcall ascbin

 orl a, R2

 mov @R0, a ; Stores the byte into the scratchpad

 ; memory

 inc R0

 mov dptr, #0xFE0E ; Ignores the following byte to ignore

 ; the commas

 mov a, #0xFF

 clr 00h

 movx @dptr, a

 lcall hold

 djnz R1, dataRead

 mov dptr, #0xFE0D ; Closes the file

 mov a, #0x84

 clr 00h

 movx @dptr, a

 lcall hold

 ret

;===

hold:

 jnb 00h, hold

 ret

;===

isr:

 mov dptr, #0xFE0D ; Clear the PSoC EmFile flag thus clearing

 ; the external interrupt

 mov a, #0x80

 movx @dptr, a

 setb 00h

 reti ; Return

;===

; Subroutine Ascbin

; This routine takes the ascii character passed to it in the

; acc and converts it to a 4 bit binary number which is returned

; in the acc. If an error occurs, 0 will be stuffed in the acc.

;===

ascbin:

 clr c

 add a, #0d0h ; if chr < 30 then error

 jnc notnum

 clr c ; check if chr is 0-9

 add a, #0f6h ; adjust it

 jc hextry ; jmp if chr not 0-9

 add a, #0ah ; if it is then adjust it

 ret

 hextry:

 clr acc.5 ; convert to upper

 clr c ; check if chr is a-f

 add a, #0f9h ; adjust it

 jnc notnum ; if not a-f then error

 clr c ; see if char is 46 or less.

 add a, #0fah ; adjust acc

 jc notnum ; if carry then not hex

 anl a, #0fh ; clear unused bits

 ret

notnum:

 mov a, #00h

 ret

Once this code is loaded onto and running on the 8051 system, we need to set up and

attach the SD card so that we can see meaningful data on the P1 LED’s. Plug the SD

card into your computer and create a new text document with the name “PATTERN” in

the root directory of your SD card. On the first line of your “PATTERN.txt” document,

enter 16 hexadecimal values separated by commas. What comes after that is not

important and is ignored by the PSoC and 8051 program. Therefore, your text document

can look something like this.

Plug your SD card into the SD card socket and run the code that you loaded onto your

8051 system. You should be able to see the HEX values that you loaded into the

“PATTERN.txt” file flashing sequencially on the P1 LED’s of the R31-JP.

6 ADC Example

To demonstrate this 8000 Series Swiss Army Knife ADC component, we will use

MINMON to verify the operation of the analog to digital converter.

 After wiring the 8000 series communication portion of this chip to the 8051, all

that is left to do is connect the analog voltage to be measured to P0.1 of the PSoC. For

this example, we will attach a 1000 ohm resistor between ADC IN and 5VDC and

another 1000 ohm resistor between ADC IN and GND. This should keep the ADC IN

pin held at roughly 2.5 volts. It is recommended, though not necessary, that you attach

a .1 uF capacitance between P0.2 on the PSoC and ground. P0.2 is the Bypass pin for

the analog to digital converter. Placing a capacitor on this pin can reduce the noise in

the signals we read in through the ADC. Once everything is wired together, run

MINMON on your 8051 system and enter the following commands:

Here, we can verify the reset value of the ADC register by reading from 0xF before

writing anything to it. Then, we write some value – the value is not important as long as

it is neither 0x00 nor 0x01. Writing this value – in our case, 0x05 – begins a conversion.

To get the result of the conversion, we subsequently read from the ADC register. We

can see that the ADC is working properly by the fact that it returns a result (0x7F) which

corresponds to the 2.5 volts presented at its input by the resistor divider.

 Next, I removed the resistor pulling the ADC input to 5VDC. This means that the

ADC IN pin is at 0 volts. Again, we run the following commands:

By reading the value of the ADC register (0xF) before writing anything else, we can see

that the value stored in the ADC register does not change until write to the ADC

register. We can also see that it does not matter what value is written to the ADC to start

a conversion without interrupts as long as the value is neither 0x00 nor 0x01. In this

case, 0x03 was written to 0xF to begin the conversion. As expected, the value returned

from the conversion is 0x00.

 Next, I repeat the previous experiment, except I re-insert the resistor pulling the

ADC IN pin to 5VDC and remove the resistor pulling the ADC IN pin to GND. The

behavior of the ADC run from MINMON is exactly as expected.

Lastly, we’ll test the interrupt of the ADC. For this test, I placed both resistors in their

original configuration holding the ADC IN pin at roughly 2.5 volts. To begin an analog

to digital conversion enabling the falling edge interrupt to the 8051 on the INTR line, we

need to write 0x01 to the ADC register (0xF).

Here we can see that the analog to digital conversion worked properly. The only

difference between writing 0x01 to the ADC and writing any other greater value to the

ADC is that writing 0x01 enables the falling edge interrupt on the INTR line. Upon

completion of this analog to digital conversion, the INTR line drops low.

Writing 0x00 to the ADC register clears the interrupt and does not begin a conversion.

You can see that when the write command is issued, the INTR line jumps high again.

